2. 中国科学院大学资源与环境学院, 北京 100049
2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
水稻(Oryza sativa. L)是我国最主要的粮食作物,有超过65%的人口以稻米为主食[1, 2].近年来,随着我国农田重金属污染的加重,出现了广泛的大米富镉(Cd)现象[3, 4].在湖南、广东和浙江,均出现大米Cd含量超过粮食安全标准10倍以上的严重大米镉超标事件[5~7],给我国农业生产造成了严重的经济损失,更为当地民众带来了严重的健康风险[8].在稻米Cd污染防治研究中,土壤-水稻系统Cd累积风险和健康风险评估可为污染控制策略制定和民众健康提供重要参考[5].近年来国内外学者对于稻米Cd污染风险评估进行了大量研究,主要集中在应用不同评价指数对Cd污染土壤和水稻进行质量评估及等级划分[1, 5, 9]和应用美国环保署(USEPA)提供的暴露参数和暴露方程进行健康风险评估[3, 10]两方面.
考虑到土壤-水稻重金属污染风险评估系统的随机性和不确定性,单一的指数评价难以充分反映区域土壤-水稻系统Cd污染风险水平[1, 11, 12].另一方面,我国人群在生活习惯、社会经济水平等方面与国外人群差异较大[10, 13],暴露参数的直接应用使评价结果存在较大的偏差[3].因此,从系统不确定性角度评估重金属在土壤-水稻系统累积风险有助于风险决策的科学性和合理性[14, 15].本研究以湖南攸县为例,开展不确定性风险评估,分析Cd在研究区土壤-水稻系统富集特征,累积风险和健康风险,以期为稻米Cd污染风险管理提供技术支撑.
1 材料与方法 1.1 研究区概况攸县位于湖南省东南部,为湖南省株洲市辖县,总面积为2 648 km2,总人口80.4万,介于东经113°09′09″~113°51′30″,北纬26°46′34″~27°26′30″之间,为中亚热带季风湿润气候(图 1).攸县为湖南省主要稻米产区,近年来的“镉米”事件对该地农业生产造成了严重的经济损失[3].目前该地土壤-水稻系统Cd富集特征仍不明确,其潜在生态风险受到当地政府部门和民众的广泛关注.
![]() |
图 1 研究区概况及采样点分布 Fig. 1 Research area and distribution of sampling stations |
根据攸县水稻分布格局进行野外实地考察,在各乡镇随机布点并使用GPS定位,在全县共采集124组土壤-稻米样品,其中在WL和DTQ两个主要乡镇采集样品数分别为23和20组.每个样点随机布设2~3个2 m×2 m的样方,采集5~10穴完整水稻,密封低温保存于样品袋中.在每个水稻采样点按照5点混合采样法采集土壤样品(采样深度0~10 cm),所有样品密封后带回实验室于阴凉处室温风干.
土壤样品经研磨后过100目尼龙筛,密封保存.参照文献[16]方法测定土壤pH和土壤有机质含量.土壤样品应用HCl-HNO3-HF-HClO4[17]消煮.水稻样品经自来水冲洗后将稻穗剪下,再用去离子水清洗后于105℃下杀青30 min,60℃烘至恒重,经脱壳后粉碎,应用HNO3-HClO4[3]法消解稻米样品.
应用ICP-MS测定样品Cd含量.测定过程中应用GSS-5和GSB-23对土壤和稻米进行质量控制,回收率在85.7%~108.2%之间.
1.3 数据处理稻米Cd富集系数(PUF)常被用来分析土壤-水稻系统Cd富集特征[12],并可在一定程度上消除区域环境因子影响差异[18].其计算公式为:
![]() |
(1) |
式中,PUF表示稻米Cd富集因子,RCd和SCd分别表示稻米和土壤Cd含量.
物种敏感性分布模型(SSD)是国际上生态风险评价研究热点之一,能清楚地表征危害元素在生物体内毒性阈值分布情况[4]. Xu等[18]指出当样本量较大时(n>30),SSD对于重金属元素分布的拟合优于其他拟合模型. Ding等[19]应用SSD模型对根菜Pb分布进行拟合,指出Burr-Ⅲ型方程较其他拟合方程效果较好.本研究中应用Burr-Ⅲ型方程来对研究区稻米Cd富集因子(PUF)的物种敏感性分布曲线进行拟合,其参数方程为:
![]() |
(2) |
式中b、c、k为3个变化参数.
稻米Cd污染健康风险指数(HRI)[3, 5]应用USEPA提出的暴露方程[10]计算:
![]() |
(3) |
式中,Rfd为人均Cd摄入参考剂量,本研究中采用联合国粮农组织(FAO)推荐值0.8 μg ·(kg ·d)-1 (以BW计)[20].上标“~”表示随机模拟,ADD为日均暴露剂量,计算公式如下:
![]() |
(4) |
式中,f为民众食用自产食物比例,IR为成人人均摄入大米量(g ·d-1),BW为成人平均体重(kg).
Monte Carlo模拟常用在风险评价中来处理评估系统的随机性[13].相关研究指出对样本的Bootstrap抽样可进一步提高风险评估的准确性[14, 21].基于此在研究区健康风险评价中稻米Cd含量(RCd)由Bootstrap对观测值进行抽样产生.在健康风险评价中,IR多服从对数正态分布变量,BW多服从正态分布变量[21, 22].在本研究模拟中,IR为(370.82±31.0) g ·d-1的对数正态分布变量,BW为(58.6±5.6) kg的正态分布变量,f为89.69%,IR、BW和f数值均来自中国人群暴露手册(湖南部分)[23]. Monte Carlo计算显示10 000次模拟时结果趋于稳定.
1.4 数据分析数据统计和多元分析应用SPSS 17.0. Bootstrap抽样和Monte Carlo模拟应用Matlab 7.14. “Burr-Ⅲ”型方程对物种敏感性曲线(SSD)的拟合通过BurrlizO 2.0软件实现.重金属含量测定结果经对数转换后进行正态分布检验(Shapiro-Wilk检验,P < 0.05).
2 结果与讨论 2.1 土壤-水稻系统Cd富集特征研究区土壤以黏粒(66.9%)为主(表 1),有机质平均含量为41.4 g ·kg-1,符合当地土壤基本性质[3].土壤pH平均值为5.42,主要集中在5.04~5.64之间(25%~75%分布),与湖南省第二次土壤普查值相比[24](pH=5.9),酸化较为严重.土壤Cd含量范围为0.1~2.44 mg ·kg-1,变异系数高达82.4%,变化幅度较大.土壤Cd平均含量为0.33 mg ·kg-1(表 1),略高于国家土壤环境质量标准值[25](0.3 mg ·kg-1,GB 15618-1995,Grade Ⅰ).稻米Cd变化幅度较大(0.01~1.12 mg ·kg-1),变异系数为65.2%,平均含量为0.47 mg ·kg-1,约为国家粮食安全标准[26](GB 2762-2005,0.2 mg ·kg-1)的2.4倍,超标率高达72.6%(90/124).其中WL镇稻米Cd超标率均在90%以上,而稻米Cd含量较低的DTQ镇稻米Cd超标率也有45%.
![]() |
表 1 攸县土壤-稻米Cd含量及土壤基本性质 Table 1 Descriptive statistics of Cd concentration in soil-rice system and major soil properties in Youxian prefecture |
研究区稻米Cd富集因子(PUF)平均值为1.86,大于1和2的比率分别为62.9%(78/124)和41.9%(52/124),可见攸县土壤-水稻系统Cd富集显著现象广泛存在且较为严重.应用物种敏感性分布模型(SSD)对PUF分布进行拟合,观测值均在95%区间以内(图 2),可见Burr-Ⅲ型方程拟合结果较好.由图 2可知研究区PUF变化幅度较大,主要集中在0.5~2.83之间(25%~75%分布).对Cd积累最为敏感的样品( < 25%分布)在各个乡镇均有出现,主要集中在DTQ区域,在这个区间内土壤Cd平均含量为0.45 mg ·kg-1;而耐Cd性强的样品(>75%分布)主要出现在WL镇,这个区间内土壤Cd平均含量为0.21 mg ·kg-1,可见攸县稻米Cd含量空间差异明显,Cd不超标或超标不严重土壤生产Cd超标大米现象广泛存在.土壤Cd与稻米Cd之间线性关系的缺失(R2=0.05)给稻米Cd污染风险管理带来了一定的挑战.
![]() |
图 2 攸县稻米Cd富集因子物种敏感性分布曲线 Fig. 2 Species sensitivity distributions of rice Cd uptake factor in Youxian prefecture |
分别应用单因子指数(Pi)[12]和污染负荷指数(PLI)[9]对研究区土壤Cd污染进行生态风险评价,结果表明攸县土壤Cd单因子指数主要集中在1.6~3.0之间(25%~75%分布),平均值为2.2,污染程度较高[12];攸县土壤PLICd综合指数为2.4,属强污染水平[9],可见研究区土壤Cd污染较为严重. Wang等[3]对攸县各乡镇土壤剖面Cd含量进行调查,指出土壤Cd累积率在0.029~1.16 kg ·hm-2之间,水稻对土壤Cd的吸收率在0.57~21.9 g ·hm-2之间,张敏等[17]对攸县背景土、灌溉水、常用肥料和大气沉降等环境介质Cd含量进行调查,结果显示攸县土壤Cd输入主要来自大气沉降、灌溉水及水渠底泥,且与工矿企业排污联系较为密切.根据本文调查结果和以上报道数据,结合章明奎等[27]提出的元素平衡分析方法可对攸县土壤Cd累积风险进行估算.
结果表明(图 3)在当前环境条件下攸县土壤Cd有52.1%的概率大于国家土壤环境质量标准[25](0.30 mg ·kg-1,GB 15618-1995,Grade Ⅰ),1年后该概率增长为56.0%,10年后该概率达到90.4%,即10年后全县土壤Cd含量几乎都高于0.30 mg ·kg-1.另一方面,当前土壤Cd>0.6 mg ·kg-1的概率为15.1%,而10年后土壤Cd轻污染概率为59.7%,20年后土壤Cd重污染(>1 mg ·kg-1)概率达到48.2%.可见攸县土壤Cd污染形势较为严峻,需对耕地上风向和河流上游的企业排污进行治理,同时在工矿区污染排放得到有效控制的情况下,对研究区灌溉水系及水渠底泥进行Cd含量调查,针对高污染区域底泥进行固定处理,避免二次污染进入环境.
![]() |
图 3 攸县土壤Cd累积风险 Fig. 3 Accumulation risk of Cd in soil in Youxian prefecture |
健康风险评价结果(图 4)显示研究区成人经食用大米Cd平均摄入量(ADD, 以BW计,下同)为2.9 μg ·(kg ·d)-1,主要集中在1.61~3.76之间(20%~75%分布),显著高于WHO推荐值[0.8 μg ·(kg ·d)-1 (以BW计)][20].各乡镇健康风险差异较大,在稻米Cd含量最高的WL镇,ADD均值高达4.12 μg ·(kg ·d)-1,为研究区成人经食用大米Cd平均摄入量的1.4倍.在稻米Cd含量较小的DTQ乡镇,ADD平均含量为1.86 μg ·(kg ·d)-1,为研究区成人经食用大米Cd平均摄入量Cd量的64.1%.
![]() |
图 4 攸县稻米Cd日均暴露量及健康风险指数 Fig. 4 Average daily dose and health risk index of Cd in rice in Youxian prefecture |
健康风险评价指数(HRI)评价结果(图 4)显示攸县稻米Cd健康风险指数(HRI)主要集中在2.1~4.7(25%~75%分布),风险水平较高[10].在WL镇HRI>5的概率高达51.33%,有8.5%和1.5%的概率出现HRI>8和HRI>10的高风险区域.在DTQ镇,HRI均值为2.3,HRI>5的概率只有10.81%,明显低于全县和WL镇健康风险水平,但仍需对此区域保持关注.
攸县成人经食用大米Cd摄入风险较高,各乡镇差异较大.考虑到湖南省人群大米摄入量高达390 g ·d-1,在我国各省份中仅次于安徽省和江西省[23],且湖南省食用自产食物比例高达90%[23],因此造成的危害也较大,在风险管理时应给予足够重视.
2.4 稻米Cd健康风险与土壤pH关系众多研究指出土壤pH是影响Cd在土壤-水稻系统中富集的主要因子[6, 8].通过对PUF的物种敏感性分布模型(SSD)的进一步分析(图 2)可知,对Cd积累较为敏感的样品( < 50%分布)的土壤pH平均水平为5.53,变异系数为66.7%,而耐Cd性较好的样品(>50%分布)的土壤pH平均水平为5.3,变异系数仅为6.2%,可见大多数Cd超标稻米样品均来自土壤酸化严重的区域.
以土壤pH=5.5和6.0为界限对研究区稻米样品进行分类和健康风险评价.结果显示(图 5)当土壤pH < 5.5时,研究区人群经食用大米Cd平均摄入量(以BW计)为3.06 μg ·(kg ·d)-1,有95.3%的概率高于WHO推荐标准;HRI均值为3.8,HRI>3和HRI>5的概率分别为61.6%和23.8%,健康风险较高.当土壤pH在5.5和6.0之间时,ADD平均值为2.5 μg ·(kg ·d)-1,高于WHO标准的概率降为77.2%,HRI均值为3.1,HRI>3的概率降为33.7%;当土壤pH>6时,ADD平均值为2.0 μg ·(kg ·d)-1,有68.1%的概率高于WHO推荐标准,HRI均值为2.4,HRI>3的概率降到25%以下.可见土壤酸化较轻或非酸化区域稻米Cd健康风险,显著低于土壤严重酸化区.在最近的报道中,有学者指出土壤酸化也可导致水稻减产7%~8%[28].因此控制土壤酸化,增施石灰、生物炭等土壤调理剂改善土壤酸化情况是控制稻米Cd富集,提升稻米质量水平的关键途径.
![]() |
图 5 攸县不同土壤pH条件下稻米Cd日均暴露量与健康风险指数 Fig. 5 Average daily dose and health risk index of Cd in rice practiced in different soil pH conditions in Youxian prefecture |
攸县土壤-水稻系统Cd污染风险水平较高,各乡镇差异显著. Cd不超标或超标不严重土壤生产Cd超标大米现象广泛存在.研究区土壤Cd累积风险较高,需采取一定措施进行土壤修复.研究区成人经食用大米Cd摄入风险较高,以严重酸化区稻米最为显著.改善土壤酸化现状是控制稻米Cd污染的有效途径.基于不确定性分析原理的风险评价可以同时提供风险水平及不同风险等级的相应概率.不确定性分析、物种敏感性分布模型和健康风险评价模型的综合应用有助于风险决策的合理性和科学性.
[1] | Li W, Xu B, Song Q, et al. The identification of 'hotspots' of heavy metal pollution in soil-rice systems at a regional scale in eastern China[J]. Science of the Total Environment, 2014, 472 : 407–420. DOI: 10.1016/j.scitotenv.2013.11.046 |
[2] | 林鸾芳, 王昌全, 李冰, 等. 秸秆还田下改良剂对水稻生长和Cd吸收积累的影响[J]. 生态环境学报, 2014, 23(9) : 1492–1497. Lin L F, Wang C Q, Li B, et al. Effect of amendments on rice growth and cd uptake based on straw returning[J]. Ecology and Environmental Sciences, 2014, 23(9) : 1492–1497. |
[3] | Wang M E, Chen W P, Peng C. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, Southern China[J]. Chemosphere, 2016, 144 : 346–351. DOI: 10.1016/j.chemosphere.2015.09.001 |
[4] | 孙聪, 陈世宝, 宋文恩, 等. 不同品种水稻对土壤中镉的富集特征及敏感性分布(SSD)[J]. 中国农业科学, 2016, 47(12) : 2384–2394. Sun C, Chen S B, Song W E, et al. Accumulation characteristics of cadmium by rice cultivars in soils and its species sensitivity distribution[J]. Scientia Agricultura Sinica, 2016, 47(12) : 2384–2394. |
[5] | Lu Y L, Song S, Wang R S, et al. Impacts of soil and water pollution on food safety and health risks in China[J]. Environment International, 2015, 77 : 5–15. DOI: 10.1016/j.envint.2014.12.010 |
[6] | Yu H Y, Liu C P, Zhu J S, et al. Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value[J]. Environmental Pollution, 2015, 209 : 38–45. |
[7] | 程旺大, 姚海根, 张国平, 等. 镉胁迫对水稻生长和营养代谢的影响[J]. 中国农业科学, 2005, 38(3) : 528–537. Cheng W D, Yao H G, Zhang G P, et al. Effect of cadmium on growth and nutrition metabolism in rice[J]. Scientia Agricultura Sinica, 2005, 38(3) : 528–537. |
[8] | Du Y, Hu X F, Wu X H, et al. Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan province, Central South China[J]. Environmental Monitoring and Assessment, 2013, 185(12) : 9843–9856. DOI: 10.1007/s10661-013-3296-y |
[9] | 许端平, 李晓波, 苗丹, 等. 不同粒级土壤磁化率与重金属污染特征的相关关系[J]. 环境工程学报, 2015, 9(12) : 6121–6127. Xu D P, Li X B, Miao D, et al. Correlation between magnetic susceptibility and contents of heavy metals in contaminated-soil of different particle-size fractions[J]. Chinese Journal of Environmental Engineering, 2015, 9(12) : 6121–6127. |
[10] | Zheng N, Wang Q, Zhang X, et al. Population health risk due to dietary intake of heavy metals in the industrial area of Huludao city, China[J]. Science of the Total Environment, 2007, 387(1-3) : 96–104. DOI: 10.1016/j.scitotenv.2007.07.044 |
[11] | Römkens P F A M, Gou H Y, Chu C L, et al. Prediction of cadmium uptake by brown rice and derivation of soil-plant transfer models to improve soil protection guidelines[J]. Environmental Pollution, 2009, 157(8-9) : 2435–2444. DOI: 10.1016/j.envpol.2009.03.009 |
[12] | Liu W T, Zhou Q X, An J, et al. Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars[J]. Journal of Hazardous Materials, 2010, 173(1-3) : 737–743. DOI: 10.1016/j.jhazmat.2009.08.147 |
[13] | Koupaie E H, Eskicioglu C. Health risk assessment of heavy metals through the consumption of food crops fertilized by biosolids: A probabilistic-based analysis[J]. Journal of Hazardous Materials, 2015, 300 : 855–865. DOI: 10.1016/j.jhazmat.2015.08.018 |
[14] | Qian Y Z, Chen C, Zhang Q, et al. Concentrations of cadmium, lead, mercury and arsenic in Chinese market milled rice and associated population health risk[J]. Food Control, 2010, 21(12) : 1757–1763. DOI: 10.1016/j.foodcont.2010.08.005 |
[15] | 刘潇威, 何英, 赵玉杰, 等. 农产品中重金属风险评估的研究与进展[J]. 农业环境科学学报, 2007, 26(1) : 15–18. Liu X W, He Y, Zhao Y J, et al. Risk assessments for heavy metals in agri-foods[J]. Journal of Agro-Environment Science, 2007, 26(1) : 15–18. |
[16] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
[17] | 张敏, 王美娥, 陈卫平, 等. 湖南攸县典型煤矿和工厂区水稻田土壤镉污染特征及污染途径分析[J]. 环境科学, 2015, 36(4) : 1425–1430. Zhang M, Wang M E, Chen W P, et al. Characteristics and inputs of cd contamination in paddy soils in typical mining and industrial areas in youxian county, Hunan province[J]. Environmental Science, 2015, 36(4) : 1425–1430. |
[18] | Xu F L, Li Y L, Wang Y, et al. Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment[J]. Ecological Indicators, 2015, 54 : 227–237. DOI: 10.1016/j.ecolind.2015.02.001 |
[19] | Ding C F, Ma Y B, Li X G, et al. Derivation of soil thresholds for lead applying species sensitivity distribution: A case study for root vegetables[J]. Journal of Hazardous Materials, 2016, 303 : 21–27. DOI: 10.1016/j.jhazmat.2015.10.027 |
[20] | Codex Standard 193-1995, Codex General Standard for Contaminants and Toxins in Food and Feed[S]. |
[21] | Augustsson A L M, Uddh-Söderberg T E, Hogmalm K J, et al. Metal uptake by homegrown vegetables-the relative importance in human health risk assessments at contaminated sites[J]. Environmental Research, 2015, 138 : 181–190. DOI: 10.1016/j.envres.2015.01.020 |
[22] | Filipsson M, Öberg T, Bergbäck B. Variability and uncertainty in Swedish exposure factors for use in quantitative exposure assessments[J]. Risk Analysis, 2011, 31(1) : 108–119. DOI: 10.1111/j.1539-6924.2010.01464.x |
[23] | 环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京: 中国环境科学出版社, 2013: 262-263, 765. |
[24] | 文星, 李明德, 涂先德, 等. 湖南省耕地土壤的酸化问题及其改良对策[J]. 湖南农业科学, 2013(1) : 56–60. Wen X, Li M D, Tu X D, et al. Acidification problems of arable land in hunan province and its improvement countermeasures[J]. Hunan Agricultural Sciences, 2013(1) : 56–60. |
[25] | GB 15618-1995, 土壤环境质量标准[S]. GB 15618-1995, Environmental Quality Standard for Soils[S]. |
[26] | GB 2762-2005, 食品中污染物限量[S]. GB 2762-2005, Maximum Levels of Contaminants in Foods[S]. |
[27] | 章明奎, 杨东伟. 绍兴平原二种典型农田系统中重金属流及其平衡分析[J]. 生态环境学报, 2010, 19(2) : 320–324. Zhang M K, Yang D W. Flows and mass balance of heavy metals in two typical farming systems in Shaoxing plain, Zhejiang province, China[J]. Ecology and Environmental Sciences, 2010, 19(2) : 320–324. |
[28] | 曾勇军, 周庆红, 吕伟生, 等. 土壤酸化对双季早、晚稻产量的影响[J]. 作物学报, 2014, 40(5) : 899–907. Zeng Y J, Zhou Q H, Lv W S, et al. Effects of soil acidification on the yield of double season rice[J]. Acta Agronomica Sinica, 2014, 40(5) : 899–907. DOI: 10.3724/SP.J.1006.2014.00899 |