2. 中国科学院城市环境研究所, 厦门 361021;
3. 中国科学院青岛生物能源与过程研究所, 青岛 266101
2. Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
3. Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
沉积物微生物燃料电池(sediment microbial fuel cells,SMFCs)是利用电化学活性微生物代谢将河、湖或海底沉积物中有机质的化学能转化成电能的装置. SMFCs在底泥原位修复[1]的同时,可为远程无线传感器[2]和水下超声波探测器[3]等水体监测仪器提供低功率的电源,应用前景广泛.
电极电位影响电化学活性微生物与电极间的电子传递,设置合适的电位有助于电化学活性微生物在电极上富集成膜,缩短微生物燃料电池的启动时间,并提高其产电性能[4~6]. Wang等[7]发现0.20 V (vs. Ag/AgCl)电位促进了阳极电化学活性微生物在电极表面形成生物膜. Finkelstein等[8]发现0.62 V (vs. Ag/AgCl)电位能够促进电化学活性微生物在阳极生物膜的富集从而缩短微生物燃料电池启动时间.外电阻可影响阳极电位,进而影响阳极生物膜的微生物群落结构.李辉等[9]发现微生物燃料电池启动阶段外接电阻阻值越高,阳极生物膜微生物生物量越高,但产电微生物的丰度越低,阳极的电化学性能越差,同时也发现开路条件下电池启动时间更长.研究开、闭路条件下SMFCs阳极生物膜微生物群落结构差异, 有助于加深电化学活性微生物与电极间电子传递对电池启动影响机制的认识.
随着分子生物学理论和技术的快速发展,T-RFLP[10]、DGGE[11, 12]以及克隆文库技术[13, 14]等基于PCR的分子指纹技术不需要对微生物进行分离培养,已广泛应用于电极生物膜微生物种群结构解析,但是这些传统的分子生物学方法获得样品微生物群落信息有限.高通量测序技术具有较高的测序深度,能较全面地反映电极生物膜微生物群落结构[15, 16].本研究采用Solexa高通量测序技术系统分析了开、闭路条件下启动的SMFCs阳极生物膜细菌群落结构差异,加深了产电微生物电子传递对SMFCs启动影响机制的认识.
1 材料与方法 1.1 实验装置及运行条件实验装置如图 1所示,50 L圆柱形容器下层泥土区(取自厦门集美某池塘底泥)为阳极厌氧区域,阳极电极材料为碳毡,几何面积为16 cm2 (4 cm×4 cm),埋于泥土约15 cm处,钛丝引出;上层水相深度约为6 cm,阴极为100 cm2 (10 cm×10 cm)的碳毡,悬浮于好氧水面,阴阳极用钛丝引出后导线连接,外电阻为5 kΩ;开路对照采用相同设置但未连接外部电阻.电极使用前依次用0.1 mol ·L-1 HCl和0.1 mol ·L-1 NaOH浸泡去除表面吸附物.电压(U)每隔10 min由数据采集器(Keithley2700,美国)自动采集保存.
![]() |
图 1 实验装置示意 Fig. 1 Diagram of experimental setup |
SMFCs产生连续、稳定的输出电压(0.38 V)视为阳极生物膜发育成熟.此后取出阳极并以磷酸钠盐缓冲液(50 mmol ·L-1,pH 7.0)洗涤,采用土壤微生物DNA提取试剂盒(Mobio,美国)提取阳极生物膜基因组DNA.
1.2.2 PCR扩增以提取的SMFCs阳极生物膜DNA为模板,用引物27F和533R对细菌16S rDNA的V3可变区进行PCR扩增,其中在作为测序端的通用引物533R上加标签标记[17]. PCR反应体系组成: 5×FastPfu缓冲液4 μL,dNTP 2 μL,正向引物0.8 μL,反向引物0.8 μL,FastPfu聚合酶0.4 μL,模板1μL,灭菌蒸馏水补足至20 μL. PCR扩增程序为: 95℃,预变性5 min;95℃ 40 s,56℃ 30 s,72℃ 40 s,30个循环;72℃,10 min;4℃保存.
1.2.3 PCR产物定量及微乳液PCRPCR产物经纯化后采用QuantiFluorTM-ST蓝色荧光定量系统(Promega,美国)定量,将待测样品比例混合进行微乳液PCR,产物上机测序.
1.2.4 序列分析使用QIIME 1.5.0软件[18]处理所得序列,去除的冗余序列包括其平均质量低于25,或其模糊碱基数大于0,或长度短于200 bp;序列比对采用NCBI数据库,使用香农(Shannon)指数、Chao1指数、Phylogenetic diversity (PD)等表征样品菌落多样性.
2 结果与讨论 2.1 生物膜细菌群落结构分析 2.1.1 测序质量评价利用高通量测序技术对SMFCs在开、闭路条件下启动阳极生物膜细菌16S rDNA V3区序列分析.开路下阳极生物膜共获得4 238条原始序列,优化序列3 936条,97%相似度聚类分析产生1 581个OTUs;闭路启动阳极生物膜共获得4 198条原始序列,优化序列3 930条,经过97%相似度归并共产生1 551个OTUs.
2.1.2 细菌多样性评价开、闭路启动阳极生物膜细菌序列信息及其多样性指数如表 1所示.从中可知,开路条件下启动阳极生物膜菌群Shannon指数、PD指数及Chao1指数均大于闭路条件下运行的电极生物膜,说明开路条件下阳极生物膜菌群丰富度及多样性都高于闭路条件下阳极生物膜.这一现象的产生可能是由于闭路条件下,微生物与阳极间存在着电子传递,影响了微生物在阳极的生长代谢,进而影响电池启动期的阳极成膜速度以及阳极菌群结构.
![]() |
表 1 阳极生物膜Solexa测序信息及α多样性指数 Table 1 Solexa sequencing and α diversity statistics of the anode biofilm |
2.2 阳极生物膜菌群分类和群落结构分析
阳极生物膜在门分类水平组成如图 2所示.两个样品菌群表现出了较高的多样性,开路条件下生物膜中细菌相对含量超过1%的门有5个,闭路条件下有6个.两个生物膜样品细菌群落在门分类水平最明显差异在于Proteobacteria、Firmicutes和Bacteroidetes在各自群落中所占比例的不同,这3个门的细菌序列分别占总序列数的81.35%(开路)和76.71%(闭路). Proteobacteria在两个样品含量最为丰富,在开路和闭路启动阳极生物膜中的含量分别为59.79%和63.02%. Firmicutes是样品中含量第2多的门,在开路启动阳极生物膜中含量为12.54%,在闭路条件下阳极生物膜中含量为10.01%. Bacteroidetes在闭路阳极生物膜中的含量只有3.60%,而在开路阳极生物膜中占9.02%.
![]() |
图 2 开闭路条件下电极生物膜细菌在门分类水平组成 Fig. 2 Relative abundance of bacterial community composition at phylum level under open and closed circuit conditions |
电极生物膜在纲分类水平上组成如图 3所示,两种条件下启动的阳极生物膜含量大于0.1%的细菌分布于17个纲,包括α-、β-、γ-、δ-Proteobacteria、Flavobacteriia、Sphingobacteria、Bacteroidia等. α-Proteobacteria在闭路启动的SMFCs阳极生物膜中只有5.63%,但在开路条件下启动阳极生物膜中含量达19.52%. γ-Proteobacteria在闭路条件下启动的SMFCs阳极生物膜中含量为18.51%,远高于开路条件下启动的4.32%.已知的电化学活性菌如Shewanella[19]、Citrobacter[20]、Aeromonas[21]、Klebsiella[22]、Pseudomonas[23]等都属于γ-Proteobacteria,说明闭路启动有利于产电微生物富集.
![]() |
图 3 电极生物膜细菌在纲分类水平含量 Fig. 3 Relative abundance of bacterial community composition at class level |
在属的水平上进行群落结构分析如表 2所示.开闭路条件下启动的生物膜中含量大于0.5%的属共有17个,这些属的细菌在开、闭路启动阳极生物膜中含量分别为15.60%和36.99%.两种条件下启动的SMFCs阳极生物膜内菌群组成有相似构成,但各个菌属的含量差异较大,如地杆菌Geobacter在闭路电极生物膜中含量为16.55%远大于开路条件下的2.31%. Geobacter是广泛分布的电化学活性细菌, 在元素生物地球化学过程中起重要作用[24, 25].其中G. sulfurreducens基因组测序已经完成,是目前了解最清楚的电化学活性细菌之一,在生物电化学系统运行过程中,其库仑效率甚至能达到99%,产电是其获得能量的主要途径[26].
![]() |
表 2 阳极生物膜中相对丰度高于0.5%细菌组成 Table 2 Relative abundance of OTU composition above 0.5% in the anode biofilm |
相比传统DGGE和克隆文库技术等微生物群落研究的分子生物学手段,高通量测序技术显示出巨大优势,获得的微生物群落信息更高,能检测到传统技术很难发现的、丰度较低的电化学活性微生物;该技术可更准确、全面地反映电极微生物群落结构[15, 27].
3 结论(1) SMFCs开、闭路条件下启动阳极生物膜细菌群落在门分类水平最明显差异在于Proteobacteria、Firmicutes和Bacteroidetes在各自群落中所占比例的不同.
(2) Chao1、Shannon和PD指数分析表明SMFCs开路下电极生物膜内菌群的丰富度和多样性均高于闭路运行阳极生物膜.
(3) SMFCs闭路条件下运行,地杆菌Geobacter在阳极生物膜中含量较高,说明闭路条件下地杆菌Geobacter在阳极表面选择性富集.
[1] | Zhao J, Li X F, Ren Y P, et al. Electricity generation from Taihu Lake cyanobacteria by sediment microbial fuel cells[J]. Journal of Chemical Technology and Biotechnology, 2012, 87(11) : 1567–1573. DOI: 10.1002/jctb.v87.11 |
[2] | Donovan C, Dewan A, Peng H, et al. Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell[J]. Journal of Power Sources, 2011, 196(3) : 1171–1177. DOI: 10.1016/j.jpowsour.2010.08.099 |
[3] | Donovan C, Dewan A, Heo D, et al. Sediment microbial fuel cell powering a submersible ultrasonic receiver: New approach to remote monitoring[J]. Journal of Power Sources, 2013, 233 : 79–85. DOI: 10.1016/j.jpowsour.2012.12.112 |
[4] | Zhu X P, Yates M D, Logan B E. Set potential regulation reveals additional oxidation peaks of Geobacter sulfurreducens anodic biofilms[J]. Electrochemistry Communications, 2012, 22 : 116–119. DOI: 10.1016/j.elecom.2012.06.013 |
[5] | Goud K R, MohanS V. Prolonged applied potential to anode facilitate selective enrichment of bio-electrochemically active Proteobacteria for mediating electron transfer: Microbial dynamics and bio-catalytic analysis[J]. Bioresource Technology, 2013, 137 : 160–170. DOI: 10.1016/j.biortech.2013.03.059 |
[6] | Xia X, Sun Y M, Liang P, et al. Long-term effect of set potential on biocathodes in microbial fuel cells: electrochemical and phylogenetic characterization[J]. Bioresource Technology, 2012, 120 : 26–33. DOI: 10.1016/j.biortech.2012.06.017 |
[7] | Wang X, Feng Y J, Ren N Q, et al. Accelerated start-up of two-chambered microbial fuel cells: Effect of anodic positive poised potential[J]. Electrochimica Acta, 2009, 54(3) : 1109–1114. DOI: 10.1016/j.electacta.2008.07.085 |
[8] | Finkelstein D A, Tender L M, Zeikus J G. Effect of electrode potential on electrode-reducing microbiota[J]. Environmental Science & Technology, 2006, 40(22) : 6990–6995. |
[9] | 李辉, 方正. 驯化期外电路对微生物燃料电池的影响[J]. 华中科技大学学报(自然科学版), 2013, 41(11) : 32–36. Lin H, Fang Z. Effect of External Circuits on Microbial Fuel Cell during Acclimated Period[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2013, 41(11) : 32–36. |
[10] | Lefebvre O, Nguyen T T H, Al-mamun A, et al. T-RFLP reveals high β-Proteobacteria diversity in microbial fuel cells enriched with domestic wastewater[J]. Journal of Applied Microbiology, 2010, 109(3) : 839–850. DOI: 10.1111/jam.2010.109.issue-3 |
[11] | Lee J, Phung N T, Chang I S, et al. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses[J]. FEMS Microbiology Letters, 2003, 223(2) : 185–191. DOI: 10.1016/S0378-1097(03)00356-2 |
[12] | Choo Y F, Lee J, Chang I S, et al. Bacterial communities in microbial fuel cells enriched with high concentrations of glucose and glutamate[J]. Journal of Microbiology and Biotechnology, 2006, 16(9) : 1481–1484. |
[13] | Logan B E, Murano C, Scott K, et al. Electricity generation from cysteine in a microbial fuel cell[J]. Water Research, 2005, 39(5) : 942–952. DOI: 10.1016/j.watres.2004.11.019 |
[14] | Kim J R, Jung S H, Regan J M, et al. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells[J]. Bioresource Technology, 2007, 98(13) : 2568–2577. DOI: 10.1016/j.biortech.2006.09.036 |
[15] | Wang Z J, Zheng Y, Xiao Y, et al. Analysis of oxygen reduction and microbial community of air-diffusion biocathode in microbial fuel cells[J]. Bioresource Technology, 2013, 144 : 74–79. DOI: 10.1016/j.biortech.2013.06.093 |
[16] | 吴义诚, 贺光华, 郑越, 等. 基于高通量测序解析碳化温度对麻秆电极微生物群落影响[J]. 环境科学, 2016, 37(6) : 270–274. Wu Y C, He G H, Zheng Y, et al. Influence of carbonization temperature on bacterial community of the biological carbon electrode based on high-throughput sequencing technology[J]. Environmental Science, 2016, 37(6) : 270–274. |
[17] | Tedersoo L, Nilsson R H, Abarenkov K, et al. 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases[J]. New Phytologist, 2010, 188(1) : 291–301. DOI: 10.1111/j.1469-8137.2010.03373.x |
[18] | Zhao Y G, Wang A J, Ren N Q. Effect of carbon sources on sulfidogenic bacterial communities during the starting-up of acidogenic sulfate-reducing bioreactors[J]. Bioresource Technology, 2010, 101(9) : 2952–2959. DOI: 10.1016/j.biortech.2009.11.098 |
[19] | Newton G J, Mori S, Nakamura R, et al. Analyses of current-generating mechanisms of Shewanella loihica PV-4 and Shewanella oneidensis MR-1 in microbial fuel cells[J]. Applied and Environmental Microbiology, 2009, 75(24) : 7674–7681. DOI: 10.1128/AEM.01142-09 |
[20] | Xu S, Liu H. New exoelectrogen Citrobacter sp. SX-1 isolated from a microbial fuel cell[J]. Journal of Applied Microbiology, 2011, 111(5) : 1108–1115. DOI: 10.1111/jam.2011.111.issue-5 |
[21] | Chung K M, Okahe S. Characterization of electrochemical activity of a strain ISO2-3 phylogenetically related to Aeromonas sp. isolated from a glucose-fed microbial fuel cell[J]. Biotechnology and Bioengineering, 2009, 104(5) : 901–910. DOI: 10.1002/bit.v104:5 |
[22] | Xia X, Cao X X, Liang P, et al. Electricity generation from glucose by a Klebsiella sp. in microbial fuel cells[J]. Applied Microbiology and Biotechnology, 2010, 87(1) : 383–390. DOI: 10.1007/s00253-010-2604-5 |
[23] | Zhang C P, Chen S S, Liu G L, et al. Characterization of strain Pseudomonas sp. Q1 in microbial fuel cell for treatment of quinoline-contaminated water[J]. Pedosphere, 2012, 22(4) : 528–535. DOI: 10.1016/S1002-0160(12)60037-X |
[24] | Bond D R, Hoines D E, Lovley D R. Electrode-reducing microorganisms that harvest energy from marine sediments[J]. Science, 2002, 295(5554) : 483–485. DOI: 10.1126/science.1066771 |
[25] | Bond D R, Lovley D R. Electricity production by Geobacter sulfurreducens attached to electrodes[J]. Applied and Environmental Microbiology, 2003, 69(3) : 1548–1555. DOI: 10.1128/AEM.69.3.1548-1555.2003 |
[26] | Methe B A, Nelson K E, Eisen J A, et al. Genome of Geobacter sulfurreducens: Metal reduction in subsurface environments[J]. Science, 2003, 302(5652) : 1967–1969. DOI: 10.1126/science.1088727 |
[27] | 吴义诚, 邓欢, 肖勇, 等. DGGE及T-RFLP分析光照下电位对细菌群落的影响[J]. 环境科学, 2014, 35(6) : 2328–2333. Wu Y C, Deng H, Xiao Y, et al. Effect of the potential on bacterial community under illumination by DGGE and T-RFLP[J]. Environmental Science, 2014, 35(6) : 2328–2333. |