2. 重庆大学资源及环境科学学院, 煤矿灾害动力学与控制国家重点实验室, 重庆 400030
2. State Key Laboratory of Coal Mine Disaster Dynamics and Control, College of Resources and Environmental Science, Chongqing University, Chongqing 400030, China
联氨(N2H4)作为厌氧氨氧化菌(AnAOB)代谢中间产物能够强化厌氧氨氧化[1, 2],但是对好氧氨(NH4+)氧化及亚硝酸盐(NO2-)氧化存在一定抑制作用[3]. N2H4抑制好氧氨氧化及亚硝酸盐氧化动力学类型分别为竞争性与非竞争性[4].添加N2H4抑制纯培养硝化细菌菌株发现,抑制75%好氧氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)活性的N2H4浓度分别为1.8×10-3 mol和1.5×10-3 mol,N2H4对NOB的毒性作用较AOB相比更为强烈[5].目前国内外关于N2H4对硝化过程的影响鲜见报道.
分子生物学技术被广泛运用于废水生物处理过程的微生物生理生态特性研究[6~10],在硝化微生物群落结构及多样性分析等领域的应用已十分成熟[11~16].本研究运行实验室规模单级硝化序批式反应器(SBR),结合克隆文库、系统发育树的构建,实时定量PCR等分子生物学方法,分析外加微量N2H4对硝化污泥中功能微生物好氧氨氧化菌(AOB)、亚硝酸盐氧化菌(NOB)的影响,以期为N2H4抑制好氧氨氧化及亚硝酸盐氧化动力学特性提供分子生物学证据,以及考察亚硝化系统通过N2H4途径洗脱NOB提高脱氮性能的可行性.
1 材料与方法 1.1 硝化污泥的富集实验室平行运行2个硝化SBR.反应器装置为圆柱形有机玻璃材质,内径11 cm,高50 cm,有效体积3 L.硝化SBR装置示意见图 1所示.反应器运行周期为6 h,好氧曝气5.55 h (包括0.2 h进水)、沉淀0.25 h、出水0.2 h.反应器以(NH4)2SO4为基质、NaHCO3为无机碳源,C :N :P比为65 :5 :1[17]配制合成废水. 1 L合成废水加入1 mL微量元素液,微量元素液主要组分为: ZnSO4 ·7H2O,0.43 g ·L-1;CoCl2 ·6H2O,0.24 g ·L-1;FeSO4 ·7H2O,5.0 g ·L-1;CaCl2 ·2H2O,4.2 g ·L-1;MnCl2 ·4H2O,0.99 g ·L-1;CuSO4 ·5H2O,0.25 g ·L-1;MgSO4 ·7H2O,5.0 g ·L-1;(NH4)6Mo7O24 ·4H2O,1.1 g ·L-1;NiSO4.6H2O,0.21 g ·L-1;H3BO4,0.014 g ·L-1;EDTA,15.0 g ·L-1.硝化SBR运行过程pH只通过在配水中加入NaHCO3控制在7.0~8.5范围内,DO浓度通过转子流量计控制空气曝气速率保持在2~4mg ·L-1的浓度范围内,水浴加热使反应器内温度保持在25℃±1℃.
![]() |
1.反应器; 2.磁力搅拌器; 3.空气压缩机; 4.气体流量计; 5.热力循环泵; 6.恒温水浴装置; 7.pH电极; 8.DO电极; 9.泥样采集口 图 1 硝化反应器装置示意 Fig. 1 Schematic diagram of nitrifying reactor |
将外加微量N2H4前后采集的硝化污泥样品(0.1 g ·个-1)加入无菌EP管中,滴入1.5 mL DNA裂解缓冲液(配制: 100 mmol ·L-1 Tris-HCl;100 mmol ·L-1 sodium EDTA;1.5 mol ·L-1NaCl;2% CTAB;100 mmol ·L-1磷酸缓冲液,上述溶液pH均为8.0),通过DNA提取装置(OMEGA BIO-TEK, Norcross, GA, USA),参照文献[18]报道的方法提取硝化污泥中功能微生物(AOB、NOB) DNA.然后,分别用1%琼脂糖电泳与微量紫外分光光度计定性定量检测DNA样品浓度和纯度.提取的DNA样品用于功能微生物的功能基因扩增及量化.
AOB功能基因amoA进行扩增的编码基因引物组为amoA1F/amoA2R[19],其碱基序列为(5′GGGGTTTCTACTGGTGGT-CCCCTCKGSAAAGCCTTC TTC 3′),于95℃进行5min 30个循环的反应(94℃变性1 min;56℃退火1 min;72℃延伸3 min). NOB功能基因nxrB进行扩增的编码基因引物组为nxrB1F/nxrB1R[20],其碱基序列为(5′ACGTGG AGACCAAGCCGGG-CCGTGCTG TTGAYCTCTGTGA 3′),同样于95℃进行5 min 30个循环的反应(94℃变性1 min;65℃退火1 min;72℃延伸3 min).
1.3 硝化污泥中功能微生物的系统发育树建立将纯化后的AOB、NOB功能基因PCR扩增片段插入到pMD19-T载体的多克隆酶切位点中, 转化成大肠杆菌DH-5α感受态细胞,送往上海生工生物工程股份有限公司进行测序.利用MEGA 4.1软件[21]对测序处理后的功能基因有效序列依据Neighbor-Joining (NJ)法构建硝化污泥中功能微生物AOB、NOB的系统发育树.
1.4 硝化污泥中功能微生物的定量分析采用荧光实时定量PCR法定量分析外加微量N2H4对硝化污泥中功能微生物的影响. AOB功能基因amoA进行扩增的编码基因引物组同样为amoA1F/amoA2R[19],于95℃进行30 s 40个循环的反应(95℃变性5 s;60℃退火34 s),NOB功能基因nxrB进行扩增的编码基因引物组同样为nxrB1F/nxrB1R[20],于95℃进行30 s 40个循环的反应(95℃变性5 s;68℃退火34 s).
于ABI 7500Q-PCR仪(Applied Biosystems, Carlsbad, USA)上25μL反应体系中进行实时定量PCR测定.提取扩增后的amoA与nxrB基因片段质粒,按照10~107 copies ·μL-1的浓度梯度连续稀释质粒DNA制备标准.通过熔解曲线分析与琼脂糖凝胶电泳检验扩增产物的特异性.实时定量PCR测定过程中,每组DNA样品的3次重复测定均在两个独立的定量PCR仪上进行,根据阈值循环(Ct)值与基因拷贝数对数(lg)之间的关系绘制标准曲线[22].
2 结果与讨论 2.1 硝化SBR运行性能及污泥性质分析平行运行实验室规模硝化SBR 1号和2号.未添加N2H4条件下的硝化SBR1号反应器运行性能和污泥性质分别见图 2(a)、2(c)所示;硝化SBR2号在启动运行50 d后,于反应器内加入约3 mg ·L-1 N2H4持续运行25 d,反应器运行性能和污泥性质分别见图 2(b)、2(d)所示.
![]() |
图 2 硝化SBR运行性能及污泥性质 Fig. 2 Operational performance and sludge activity of nitrifying SBR1 and SBR2 |
硝化SBR1号和2号启动运行阶段(图 2阶段1),受进水氨氮(NH4+-N)浓度递增带来的负荷冲击,出水NH4+-N波动明显.特别是阶段1中第3个进水NH4+-N浓度递增时期(第15~20 d),由于进水NH4+-N浓度增加幅度较大(由105mg ·L-1直接增加至233mg ·L-1),DO仍保持在初始浓度范围(约2mg ·L-1)未相应升高,且该时期没有及时对反应器进行排泥,致使硝化SBR1号和2号中出现NH4+-N的短暂累积(出水NH4+-N浓度最高达到127.5mg ·L-1),表征污泥生物量浓度的挥发性悬浮固体浓度(MLVSS)分别由初始的2.33 g ·L-1和1.77 g ·L-1增加至3.13 g ·L-1和2.49 g ·L-1.其后,将反应器氧曝气量增大(由初始2mg ·L-1逐步提高至约4mg ·L-1)并及时排泥,持续运行一段时间后,硝化污泥活性逐渐恢复(图 2阶段2),出水NH4+-N浓度随着DO浓度的提高逐步递减至0~2mg ·L-1范围波动.硝化SBR1号和2号从启动到稳定运行阶段(阶段1和阶段2),出水亚硝态氮(NO2--N)浓度分别在0~1.48 mg ·L-1与0~1.12mg ·L-1的范围内波动,未出现明显积累;出水硝态氮(NO3--N)浓度则随着进水NH4+-N基质浓度的递增(图 2阶段1与阶段2中,进水NH4+-N浓度由初始的50mg ·L-1逐步增加至536.4mg ·L-1)分别由初始的42mg ·L-1与49.1mg ·L-1累积至527.2mg ·L-1与525.8mg ·L-1.好氧氨氧化菌(AOB)对环境因素较亚硝酸盐氧化菌(NOB)相比更为敏感.两个反应器中污泥体积指数(SVI)在阶段1和阶段2中均持续减少至30 mL ·g-1左右,反应器稳定运行至阶段2中取样测得MLVSS逐渐降低且维持在1.5 g ·L-1左右.硝化SBR1号和2号中AOB与NOB富集成功且生长良好.向稳定运行50 d后的硝化SBR2号中加入约3mg ·L-1N2H4,连续运行25 d[见图 2(b)、2(d)阶段3].反应器运行至第63 d后出水NH4+-N和NO2--N明显积累,反应器性能呈现恶化趋势.第65 d开始,出水NO3--N显著减少,直至反应器运行至第75 d,仅有少量NO2--N生成,未检测到明显的出水NO3--N累积,N2H4对NOB抑制作用强于其对AOB,这与文献[4, 5]报道的结论一致.硝化SBR2号中MLVSS与SVI从第50 d加入微量N2H4后迅速变化.反应器运行至第57 d时,MLVSS已快速降低至0.41 g ·L-1,但是硝化SBR2号运行性能在添加微量N2H4后的前12 d内未出现明显变化,所以仍然在该时段内对反应器进行间歇排泥,导致实际已受N2H4抑制影响的硝化污泥中生物量浓度明显减少.反应器运行至第63 d开始停止排泥,此后MLVSS值维持在0.3~0.6 g ·L-1范围内. SVI则在添加N2H4后持续降低至9.4 mL ·g-1,此时硝化细菌已基本停止生长,硝化SBR2号在添加微量N2H4持续运行25 d后崩溃.而未添加N2H4的硝化SBR1号运行稳定[见图 2(a)、2(c)阶段3].外加微量N2H4对AOB与NOB具有一定毒性作用,在没有AnAOB消耗N2H4的亚硝化系统中可能无法通过添加适量浓度N2H4抑制NOB活性来实现NOB的洗脱.
2.2 硝化污泥中功能微生物的群落结构分析于硝化SBR2号运行阶段不同时期(启动期、未加N2H4的运行中期、添加N2H4的运行后期)分别采集污泥样品XH1、XH2和XH3.在样品XH3中挑取50个富含amoA和nxrB功能基因的阳性克隆样品进行测序,分别得到19个amoA基因有效序列和20个nxrB基因有效序列,对其随机编码为XHA1-19和XHB1-20,采用MEGA4.1软件通过Neighbor-joining (NJ)法构建硝化污泥中功能微生物的功能基因进化关系.详见图 3所示,其中图 3(a)为AOB amoA功能基因进化关系,图 3(b)为NOB nxrB功能基因进化关系.
![]() |
图 3 外加微量N2H4的硝化污泥中AOB与NOB功能基因进化关系 Fig. 3 Diverse evolutionary relationship between the functional genes of AOB and NOB in nitrifying sludge with trace N2H4 addition |
AOB amoA功能基因序列经克隆测序处理后聚类得到的19个操作单元(OTU)与非培养的amoA基因高度相似,主要分布于亚硝化球菌属(Nitrosococcu)和亚硝化单胞菌属(Nitrosomonas),另有少部分属于亚硝化螺菌属(Nitrosospira).外加微量N2H4的硝化反应器中AOB群落组成较丰富. NOB nxrB功能基因序列经克隆测序处理聚类得到的20个OUT分布于硝化杆菌属(Nitrobacter).外加微量N2H4的硝化反应器中NOB群落组成较AOB相比略显单一.本研究报道的AOB与NOB群落结构分析结果与文献[23, 24]报道的相关研究结论相近.
2.3 硝化污泥中功能微生物的定量分析为了从微观角度定量说明外加微量N2H4对硝化污泥中AOB、NOB的影响,本研究定量测定添加微量N2H4前后的硝化污泥样品XH1、XH2和XH3中AOB与NOB的数量变化,结果如图 4所示.
![]() |
图 4 添加微量N2H4前后硝化污泥样品XH1、XH2和XH3中功能微生物及总细菌的定量分析 Fig. 4 Quantitative analysis for functional microorganisms and total bacteria in nitrifying sludge samples XH1, XH2 and XH3 before and after trace N2H4 addition |
未添加微量N2H4时,硝化SBR 2号中总细菌16S rRNA基因拷贝数(以干污泥计)在启动初期为11.2×1013 copies ·g-1,运行稳定时期为3.24×1013copies ·g-1,添加N2H4后的运行后期为2.31×1013copies ·g-1.反应器启动初期XH1中AOB的amoA基因拷贝数为2.01×106 copies ·g-1,NOB的nxrB基因拷贝数为4.20×105 copies ·g-1;富集培养50 d后运行中期的XH2中amoA基因拷贝数为1.0×109 copies ·g-1,比启动初期增长近3个数量级,nxrB基因拷贝数为1.28×107copies ·g-1,比启动初期增长了近2个数量级;添加微量N2H4后,XH3中amoA基因拷贝数仅为2.09×104copies ·g-1,比XH2中amoA基因拷贝数减少近5个数量级、启动初期XH1中减少近2个数量级,nxrB基因拷贝数为2.56×105 copies ·g-1,比XH2中nxrB基因拷贝数减少近2个数量级、是启动初期XH1中的一半.外加微量N2H4前后AOB amoA基因拷贝数占各阶段总细菌16S rRNA基因拷贝数的1.89×10-8、3.1×10-5和9.02×10-10,NOB nxrB基因拷贝数占各阶段总细菌16S rRNA基因拷贝数的3.74×10-9、3.95×10-7和1.11×10-8.分子生物学定量分析表明微量N2H4显著抑制硝化污泥中AOB与NOB的微生物量,与外加微量N2H4的硝化SBR 2号运行结果基本一致,即添加N2H4后硝化细菌数量减少,对应反应器中微生物基质利用速率降低.
外加微量N2H4的硝化污泥中AOB amoA基因拷贝数绝对值略少于NOB nxrB基因拷贝数,添加N2H4前后AOB amoA基因拷贝数变化幅度大于NOB nxrB基因拷贝数的,AOB amoA基因拷贝数占总细菌16S rRNA基因拷贝数的相对比值小于NOB nxrB基因拷贝数的. AOB对环境因素较NOB相比更为敏感,硝化SBR 2号运行过程外部控制条件的不稳定性以及N2H4对AOB与NOB的抑制与毒性作用导致外加微量N2H4的硝化污泥中AOB流失幅度大于NOB;此外,即使微生物细胞死亡已久,仍能提取其DNA得到基因拷贝数,功能微生物基因拷贝数只能间接表征微生物存在的数量,基因拷贝数出现明显变化也只能表明微生物是否生长或者死亡,不能准确表征微生物活性[25].所以,本研究外加微量N2H4前后硝化污泥中AOB与NOB的定量分析结果只能说明N2H4影响AOB与NOB在硝化污泥中的微生物量,为准确表征N2H4对AOB与NOB活性抑制的强弱,需进一步从活性表达水平上进行研究.
3 结论(1)本研究外加微量N2H4的硝化污泥中,AOB主要属于Nitrosococcu和Nitrosomonas属,少量属于Nitrosospira属;NOB属于Nitrobacter属.外加微量N2H4的硝化污泥中AOB与NOB的功能基因拷贝数均显著减少,从分子生物学角度证明长期外加微量N2H4明显抑制硝化微生物的生长.
(2)本研究长期添加微量N2H4(3mg ·L-1)的硝化系统出现崩溃,N2H4对功能微生物具有毒性作用.所以在没有AnAOB消耗N2H4的亚硝化系统,无法通过调控外加N2H4浓度水平,抑制NOB活性来实现NOB洗脱,从而提高亚硝化生物脱氮性能.
(3) AOB对环境因素较NOB相比更为敏感,本研究外加微量N2H4对功能微生物的抑制及毒性作用促使硝化SBR中AOB流失幅度大于NOB,但是定量PCR方法无法准确比较N2H4对两者活性抑制的强弱.
致谢: 本研究分子生物学检测与分析得到河南师范大学杨清香教授课题组的大力帮助,在此表示感谢.[1] | Zakker I, Kroon K, Rikmann E, et al. Accelerating effect of hydroxylamine and hydrazine on nitrogen removal rate in moving bed biofilm reactor[J]. Biodegradation, 2012, 23(5) : 739–749. DOI: 10.1007/s10532-012-9549-6 |
[2] | Yao Z B, Zhang D J, Xiao P Y, et al. Long-term addition of micro-amounts of hydrazine enhances nitrogen removal and reduces NO and NO3- production in a SBR performing Anammox[J]. Journal of Chemical Technology and Biotechnology, 2016, 91(2) : 514–521. DOI: 10.1002/jctb.2016.91.issue-2 |
[3] | Yao Z B, Cai Q, Zhang D J, et al. The enhancement of completely autotrophic nitrogen removal over nitrite (CANON) by N2H4 addition[J]. Bioresource Technology, 2013, 146 : 591–596. DOI: 10.1016/j.biortech.2013.07.121 |
[4] | 肖芃颖, 张代钧, 姚宗豹, 等. N2H4抑制好氧氨氧化及亚硝酸盐氧化动力学类型[J]. 环境工程学报, 2015, 9(2) : 513–518. Xiao P Y, Zhang D J, Yao Z B, et al. Inhibition types of kinitics for aerobic ammonia oxidation and nitrite oxidation by N2H4[J]. Chinese Journal of Environmental Engineering, 2015, 9(2) : 513–518. |
[5] | Tomlinson T G, Boon A G, Trotman C N A. Inhibition of nitrification in the activated sludge process of sewage disposal[J]. Journal of Applied Bacteriology, 1966, 29(2) : 266–291. DOI: 10.1111/jam.1966.29.issue-2 |
[6] | Kwon S, Kim T S, Yu G H, et al. Bacterial community composition and diversity of a full-scale integrated fixed-film activated sludge system as investigated by pyrosequencing[J]. Journal of Microbiology and Biotechnology, 2010, 20(12) : 1717–1723. |
[7] | Lee T K, Doan T V, Yoo K, et al. Discovery of commonly existing anode biofilm microbes in two different wastewater treatment MFCs using FLX Titanium pyrosequencing[J]. Applied Microbiology and Biotechnology, 2010, 87(6) : 2335–2343. DOI: 10.1007/s00253-010-2680-6 |
[8] | Liu Z H, Huang S B, Sun G P, et al. Diversity and abundance of ammonia-oxidizing archaea in the Dongjiang River, China[J]. Microbiological Research, 2011, 166(5) : 337–345. DOI: 10.1016/j.micres.2010.08.002 |
[9] | Liu T, Li Dong, Zeng H P, et al. Biodiversity and quantification of functional bacteria in completely autotrophic nitrogen-removal over nitrite (CANON) process[J]. Bioresource Technology, 2012, 118 : 399–406. DOI: 10.1016/j.biortech.2012.05.036 |
[10] | 于皓, 陈川, 张莉, 等. 溶解氧对碳氮硫共脱除工艺中微生物群落影响解析[J]. 环境科学, 2013, 34(6) : 2368–2374. Yu H, Chen C, Zhang L, et al. Effect of dissolved oxygen on microbial community in simultaneous removal of carbon, nitrogen and sulfur process[J]. Environmental Science, 2013, 34(6) : 2368–2374. |
[11] | 高景峰, 李婷, 张树军, 等. 两个CANON污水处理系统中氨氧化古菌的丰度和多样性研究[J]. 环境科学, 2015, 36(8) : 2939–2946. Gao J F, Li T, Zhang S J, et al. Abundance and community composition of ammonia-oxidizing archaea in two completely autotrophic nitrogen removal over nitrite systems[J]. Environmental Science, 2015, 36(8) : 2939–2946. |
[12] | 程建华, 窦智勇, 孙庆业. 铜陵市河流沉积物中硝化和反硝化微生物分布特征[J]. 环境科学, 2016, 37(4) : 1362–1370. Chen J H, Dou Z Y, Sun Q Y. Distribution characteristics of nitrifiers and denitrifiers in the river sediments of Tongling city[J]. Environmental Science, 2016, 37(4) : 1362–1370. |
[13] | 何势, 顾超超, 魏欣, 等. 低浓度环丙沙星对曝气生物滤池生物膜硝化过程及硝化微生物的作用影响[J]. 环境科学, 2016, 37(4) : 1485–1491. He S, Gu C C, Wei X, et al. Effect of low-concentration ciprofloxacin on the nitrification and nitrifying microorganisms of biofilms in biological aerated filter[J]. Environmental Science, 2016, 37(4) : 1485–1491. |
[14] | Xiao P Y, Lu P L, Zhang D J, et al. Effect of trace hydrazine addition on the functional bacterial community of a sequencing batch reactor performing completely autotrophic nitrogen removal over nitrite[J]. Bioresource Technology, 2015, 175 : 216–223. DOI: 10.1016/j.biortech.2014.10.084 |
[15] | Sonthiphand P, Limpiyakorn T. Change in ammonia-oxidizing microorganisms in enriched nitrifying activated sludge[J]. Applied Microbiology and Biotechnology, 2011, 89(3) : 843–853. DOI: 10.1007/s00253-010-2902-y |
[16] | Gao J F, Luo X, Wu G X, et al. Abundance and diversity based on amoA genes of ammonia-oxidizing archaea and bacteria in ten wastewater treatment systems[J]. Applied Microbiology and Biotechnology, 2014, 98(7) : 3339–3354. DOI: 10.1007/s00253-013-5428-2 |
[17] | Bollmann A, French E, Laanbroek H J. Chapter three-isolation, cultivation, and characterization of ammonia-oxidizing bacteria and archaea adapted to low ammonium concentrations[J]. Methods in Enzymology, 2011, 486 : 55–88. DOI: 10.1016/B978-0-12-381294-0.00003-1 |
[18] | Zhou J, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition[J]. Applied and Environmental Microbiology, 1996, 62(2) : 316–322. |
[19] | Purkhold U, Pommerening-Röser A, Juretschko S, et al. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys[J]. Applied and Environmental Microbiology, 2000, 66(12) : 5368–5382. DOI: 10.1128/AEM.66.12.5368-5382.2000 |
[20] | Pester M, Maixner F, Berry D, et al. NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira[J]. Environmental Microbiology, 2014, 16(10) : 3055–3071. DOI: 10.1111/emi.2014.16.issue-10 |
[21] | Tamura K, Dudley J, Nei M, et al. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Molecular Biology and Evolution, 2007, 24(8) : 1596–1599. DOI: 10.1093/molbev/msm092 |
[22] | Gutiérrez R A, Green P J, Keegstra K, et al. Phylogenetic profiling of the Arabidopsis thaliana proteome: what proteins distinguish plants from other organisms?[J]. Genome Biology, 2004, 5(8) : R53. DOI: 10.1186/gb-2004-5-8-r53 |
[23] | Shi X Y, Sheng G P, Li X Y, et al. Operation of a sequencing batch reactor for cultivating autotrophic nitrifying granules[J]. Bioresource Technology, 2010, 101(9) : 2960–2964. DOI: 10.1016/j.biortech.2009.11.099 |
[24] | Tsuneda S, Nagano T, Hoshino T, et al. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor[J]. Water Research, 2003, 37(20) : 4965–4973. DOI: 10.1016/j.watres.2003.08.017 |
[25] | Lü F, Hao L P, Guan D X, et al. Synergetic stress of acids and ammonium on the shift in the methanogenic pathways during thermophilic anaerobic digestion of organics[J]. Water Research, 2013, 47(7) : 2297–2306. DOI: 10.1016/j.watres.2013.01.049 |