2. Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå SE-90183, Sweden;
3. 重庆理工大学化学化工学院, 重庆 400054
2. Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå SE-90183, Sweden;
3. College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
有色溶解性有机质(chromophoric dissolved organic matter,CDOM)作为溶解性有机质(dissolved organic matter,DOM)中的重要组成部分广泛存在于各种天然水体中,其化学组成与结构十分复杂,在湖泊水生生态系统中扮演着十分重要的角色[1, 2]. CDOM既可以通过对重金属或者有机污染物的吸附作用从而影响其在水体中的迁移转化过程[3],还可以对无机营养物质氮磷的循环起着重要作用[4]. 由于CDOM 具有独特的光学性质[5],在吸收太阳辐射的紫外光和可见光后,可发生一系列光化学降解,这种作用对水体初级生产力和生态系统的结构和功能均有显著影响[6~9]. 目前国内外已有较多针对水体CDOM的研究工作,研究对象包括湖泊、 河流、 海洋以及河口[10~15],而对三峡库区及其内陆腹地水体CDOM的关注较少. 另外,有研究表明,CDOM的来源、 性质等在不同湖区的空间分布上也存在显著差异[16],其地化特征受沿岸生态系统和周围土地使用类型影响较大: 如沿岸以森林生态系统为主的湖泊水体CDOM陆源性更强,腐殖化程度高; 而受两岸农田、 果园的输入和人为排放影响的CDOM具有明显的自生源特征[17]. 截流筑坝后形成的水库型湖泊,其DOM的地球化学特征是否和自然湖泊有所差异尚需研究. 因此,基于水体周边生态系统分析,有助于进一步认识内陆水体CDOM的地球化学特征,对了解湖泊生态以及评价水环境安全具有重要意义.
基于此,本文以三峡库区典型内陆水库型湖泊——长寿湖为研究对象,在笔者所在课题组已有研究成果基础上[17~19],应用三维荧光光谱和紫外-可见光吸收光谱,通过分析长寿湖不同湖区CDOM的光谱特性,结合该库区沿岸不同生态系统和土地使用类型及入湖河流情况,探讨长寿湖水体中CDOM的组成、 来源和空间分布特征等,了解周边生态环境对CDOM地化特征的影响,以期为进一步揭示CDOM在内陆水库型湖泊中的环境行为特性提供理论依据.
1 材料与方法 1.1 区域概况与样本采集长寿湖水库为典型“水库型”湖泊,于1957年建成并投入使用,其地理位置为北纬29°50′~30°04′,东经107°15′~107°25′[图 1(a)],位于长江支流龙溪河下游,重庆市长寿区境内,是目前西南地区最大的人工淡水湖,也是重庆市最大的湖泊旅游风景区. 长寿湖水域面积约65.5 km2,平均水深15 m,库容10.27亿m3,沿岸生态系统差异较大,土地利用类型复杂,以人工林、 果园、 耕地、 居民用地为主[图 1(b)],库区水体受周边果林施用农药、 农田施用化肥、 城镇排放生活污水等人为干扰较大[20].
![]() |
图 1 重庆长寿湖沿岸生态系统及采样点分布示意 Fig. 1 Riparian ecosystems and sampling locations of Changshou Lake |
本研究于2014年1~11月在长寿湖5个采样点(S1~S5)进行水样采集[21],其布设情况如图 1(a),分别是: S1(E107°12′29″,N29 °55′3″)位于长寿湖南部水库大坝前,即水库出口水; S2(E107°16′23″,N29°59′3″)是长寿湖主要水源之一龙溪河的入口水,该河流流经梁平县、 垫江县,是一条受人为干扰较大的河流; S3(E107°18′58″,N29°58′21″)位于水库北部的回水区,水速缓慢,水体透明度较高,富营养化现象明显; S4(E107°20′19″,N29°57′5″)为长寿湖水库东部另一支流的入水口,以果园为主,较少居民用地; S5(E107°17′45″,N29°56′30″)位于水库中部,周边人工林系统较为发达,北部岛屿果园林立,西部和南部岛屿旅游业发达. 其中S2和S4属于入湖区,受河流影响较为明显,S1、 S3和S5属于非入湖区,受河流影响较小. 采用HDPE材质水样瓶采集水样,采样瓶预先用稀硝酸浸泡24 h以上,Millipore 超纯水(18.2 MΩ·cm)冲洗3次. 利用HANNA多参数水质分析仪(HI98130)现场测定pH、 EC和TDS等指标后,样品放入4℃保温箱内保存立即送回实验室冷藏备用. 为避免微生物影响,利用0.45 μm孔径醋酸纤维滤膜对水样过滤,滤液储存于1 L的棕色试剂瓶中备用.
1.2 光谱测定与分析有色溶解性有机质CDOM的紫外-可见吸收光谱和三维荧光光谱的检测均采用Horiba公司Aqualog 荧光光谱仪进行测定. 吸收光谱以Millipore 超纯水(18.2 MΩ·cm)作为空白,用光程路径为1 cm的石英比色皿在Ex为230~800 nm波长范围内进行扫描,扫描间隔1 nm. 荧光光谱同样以Millipore 超纯水为空白,测定范围Ex为230~450 nm,扫描间隔5 nm,发射波长Em为250~620 nm,激发光源为150 W无臭氧氙弧灯,扫描信号积分时间为3 s,样品分析中Aqualog 系统自动扣除瑞利和拉曼散射. DOM浓度采用GE InnovOx Laboratory TOC分析仪测定,以溶解性有机碳(DOC)表示,单位mg·L-1. 由于表示荧光溶解性有机质(FDOM)浓度的Fn(355)数值较大,为方便统计与分析,本研究中将其取以10为底的对数[lg(FDOM)].
此外,本研究采用SPSS 17.0对相关数据进行差异性T检验(T-test)和相关性分析,利用Origin 8.5软件Peak Pick寻峰功能对荧光峰进行定位,全文图表绘制采用Microsoft Excel 2013和Origin 8.5共同完成.
2 结果与讨论 2.1 DOC,CDOM和FDOM采用溶解性有机碳(DOC)表示DOM浓度[图 2(a)],长寿湖5个采样点DOC年均浓度变化范围在5.51~6.24 mg·L-1之间,大小顺序: S3>S1>S4>S5>S2. DOC最大值出现在S3的原因可能由于该地点位于长寿湖回水区,水力交换时间较长,DOM积累导致DOC升高; 而处于长寿湖水库入水口S2地点浓度却最低,可能由于该区域是龙溪河入湖口,龙溪河作为长寿湖主要的水源其径流量明显较其他4点高,入水口水量更大、 水流更急,DOM被稀释因而DOC浓度偏低. 同时,用a(355)来表示CDOM浓度,年均变化范围在5.03~5.61 m-1之间[图 2(b)],大小顺序: S5>S1>S2>S4>S3,整个湖区DOC和CDOM无明显线性相关,说明长寿湖水体DOM非生色团组分对DOC的贡献不容忽视,其中以S3最为明显[DOC最大(6.24±1.44) mg·L-1,但CDOM最小(5.03±1.88) m-1],该区域水体中含有共轭双键结构的生色团所占比例(CDOM/DOC)较低. 另外,图 2(d)为各点FDOM年均值变化,无显著性差异(P>0.05).
![]() |
图 2 DOC、 CDOM、 CDOM/DOC和lg(FDOM)的均值描述 Fig. 2 Descriptive statistics of average values of DOC,CDOM,CDOM/DOC and lg(FDOM) |
根据文献[22~24]研究发现,大多数水体DOM中DOC和CDOM存在显著线性相关,可以通过CDOM反演DOC浓度,但本研究中,如图 3(a),除湖区整体DOC和CDOM无相关性外(P>0.05),5个采样点中也仅S3(P<0.01)例外. 出现这种情况的原因可能为: ①就整体而言,所选取的5个采样点水体沿岸土地利用类型差异较大(果林、 耕地、 人工林、 居民用地等),各点DOM输入受不同土地利用类型有关; ②就单一采样点而言,DOM性质的季节性差异大,沿岸不同生态系统影响,DOM的产生与损耗机制各不相同,因此DOC中生色团所占比例会出现较明显波动. 进一步,计算单位DOC含量中CDOM相对浓度,即CDOM/DOC[L·(mg·m)-1][图 3(b)],各采样点CDOM/DOC与DOC均出现极显著正相关(P<0.01),说明长寿湖水体中DOC和CDOM无明显相关性,但CDOM依旧是DOC含量发生空间变化的主要影响因子之一. 同时,该值大小还可以反映CDOM在DOM中所占比例[25] [图 2(c)],S3点出现CDOM/DOC最小值[(0.80±0.28) L·(mg·m)-1],可能是由于该点处与长寿湖的回水区,水力交换时间长,新生DOM较少,光降解和微生物降解程度较大,故其CDOM在DOM中所占比例最小.
![]() |
图 3 DOC、 CDOM及CDOM/DOC相关性分析 Fig. 3 Correlation analysis among DOC,CDOM and CDOM/DOC |
对lg(FDOM)分别与DOC、 CDOM做相关性分析(图 4),结果显示: 除S3(P<0.01),其余各点均无显著相关(P>0.05),这与上文CDOM和DOC情况类似; 但S1~S5的CDOM和lgFDOM却存在极显著相关(P<0.01),这与波罗的海情况类似[26],各采样点均可采用CDOM=A×lg(FDOM)+B (r2≥0.51)形式进行线性拟合,说明至少51%的CDOM变动可以通过FDOM的变化来进行解释. 其中S3点r2值(0.66)最大,S2点r2值(0.36)最小,进一步说明相对回水区(S3)而言,入湖区CDOM中荧光组分变化对CDOM的影响更为明显.
![]() |
图 4 DOC、 CDOM和lgFDOM的相关性分析 Fig. 4 Correlation analysis among DOC,CDOM and lgFDOM |
SUVA280是280 nm处吸光系数a(254)与DOC比值,常用来表征CDOM芳香性大小,值越大,芳香化程度越高[27~30]. 光谱斜率S(275~295)是将指数方程a(λ)=a(λ0)×eS(λ0-λ)+k经自然对数转化后,对275~295 nm波长范围内的吸收系数进行线性拟合而得,反映CDOM分子量大小,值越小,分子量越大[31~33]. 湖区内SUVA280[(3.10±0.74)~(3.83±0.79) L·(mg·m)-1]与S(275~295)[(0.017±0.002)~(0.019±0.003)]空间分布差异显著(P<0.01) [图 5(a)和5 (b)]. S5点SUVA280值明显大于其他4点,芳香化程度最高. 可能由于该点位于长寿湖中部的旅游区,周围土地使用类型多以人工林为主,居民、 耕地较少,自然生态系统状态保持较好,土壤腐殖质发育程度较高,水体CDOM受沿岸土壤陆源输入影响明显,其结构更为复杂,芳香化程度更高. 而地处龙溪河入水口S2点出现S(275~295)最小值,这可能是由于龙溪河两岸分布果园、 耕地及居民用地较多,大量农业废水和生活污水随河流流至此地,沿岸输入除腐殖质外,蛋白质及多聚糖等有机大分子的影响也不容忽视,对大分子CDOM贡献较为明显. 同为入湖区的S4,由于湖面较为开阔,DOM的光降解较为频繁,这可能也是解释较高S(275~295)值、 较低SUVA280值的重要原因.
![]() |
图 5 SUVA280和S(275~295)的均值描述及相关性分析 Fig. 5 Descriptive statistics of average values of SUVA280 and S(275-295) and the correlation analysis between them |
各采样点SUVA280与S(275~295)均显著负相关(P<0.05) [图 5(c)],结果表明长寿湖水体中分子量较小的CDOM,芳香化程度较低,这种相关性受沿岸生态系统影响较小. 其中以S3和S4两采样点为典型: SUVA280最小,分别为(3.12±0.67) L·(mg·m)-1和(3.10±0.74) L·(mg·m)-1; 但S(275~295)却最大,均为0.019±0.003. 可能由于S4点为长寿湖水库入湖口,该流域沿岸村落分布少,受人为因素影响小,故外源输入的大分子有机组分少,CDOM分子量较小. 另外,S3处于水库回水区,水位较高且有大量泥沙堆积,水体腐殖化程度不高,芳香性低,且由于较长的水力交换时间使得微生物代谢较彻底,大分子量DOM被降解为小分子DOM,这也解释了前文所述S3点荧光组分在有色DOM中贡献最大.
各采样点CDOM浓度与S(275~295)均呈现极显著负相关(P<0.01)(图 6),说明DOM分子量越大,含有的生色团越多. 这种显著相关性和周边生态系统差异无关,长寿湖水体CDOM的生色团主要由具有芳香性结构的大分组分构成. 有报道指出[34],具有较高芳香性的DOM分子结构中存在的生色团比例也可能较大.
![]() |
图 6 CDOM和S(275~295)的相关性分析 Fig. 6 Correlation analysis between CDOM and S(275-295) |
根据文献[35]对荧光峰进行识别,结果发现5个采样点水体均检测出4个荧光峰(图 7),分别是: 紫光外区类腐殖质峰A(λEx/λEm=250~260/380~480 nm)、 可见光区类富里酸峰C(λEx/λEm=330~350/420~480 nm); 短波处类酪氨酸峰B (λEx/λEm=230/300~320 nm)和短波处类色氨酸峰T(λEx/λEm=230/320~350 nm),极少数样本点B峰缺失. 其中A、 C为类腐殖质峰,B、 T为类蛋白峰,前者通常与陆源土壤通过径流等方式输入和底泥腐殖质释放有关[36~38]; 后者则主要由微生物、 藻类及浮游植物内源作用产生,城市污水中也可能会包含类蛋白荧光峰[39~41].
![]() |
图 7 不同采样点 (S1~S5) 水体CDOM的典型荧光光谱 Fig. 7 Typical fluorescence spectra of water CDOM from different sampling locations (S1-S5) |
如图 8,从峰值大小上看[图 8(a)]: S2与S4类腐殖质荧光强度明显高于其他3个地点,可能因为这两点受陆源输入明显,均位于长寿湖入湖区,河流带来了大量工业、 农业废水及生活污水,Peak A与Peak C较强. S1与S3两地则表现出了较高类蛋白荧光强度(Peak B与Peak T),原因可能为: S1位于长寿湖水库出口,远离入水口,受河流影响较小,外源贡献经过湖水稀释后有所降低,内源贡献逐渐显露,从荧光峰值中体现出这一点; 而S3位于回水区,富营养化严重(叶绿素a浓度=9.82 μg·L),氮、 磷营养物质的富集导致微生物活性较高,因此DOM中类蛋白组分信号较强. 再从峰值的变化趋势上看[图 8(b)]: 入湖区(S2与S4)和非入湖(S1、 S3和S5)在荧光峰强度上表现出了恰恰相反的变化趋势——前者类腐殖质峰信号较强,但后者类蛋白峰信号明显也较高. 入湖区受河流影响较大,是陆源物质进入湖区的重要途径; 而后者由于受入湖河流影响减弱,所以类腐殖质峰出现下降趋势,但是类蛋白峰却并没有因湖水的稀释作用而等比降低,反而呈现升高趋势,可推测非入湖区S1、 S3和S5这三处水体中水生植被的降解产生了新的类蛋白组分作为补充. 位于水库库头水的S1,水流速度变缓,泥沙颗粒沉降加强,水体透明度增加,有利于浮游植物光合作用和微生物活动,致使CDOM自生源作用增强;回水区S3水力停留时间较长,富营养化现象明显,氮、 磷等营养含量高,且该地点DOM浓度较高,微生物有相对充足的可利用碳源,生物代谢活跃,有助于提高DOM中类蛋白物质贡献比例; 而S5地处长寿湖较发达的旅游产业区,在一定程度上受到人为污染排放的影响,使得该处自生源特征明显.
![]() |
图 8 各采样点峰值均值描述及变化情况 Fig. 8 Descriptive statistics of average values of fluorescence peaks and their changes in five sampling locations |
荧光指数(fluorescence index,FI)[32]: λEx=370 nm时发射波长470 nm与520 nm处荧光强度比值(λEx=370 nm,f470/520),FI>1.9时DOM来源主要以微生物、 藻类活动(内源)为主,自生源特征明显; FI<1.4时内源贡献相对较低,主要源于外源输入[42]. 各采样点FI年均值1.59±0.02~1.60±0.03[图 9(a)],无显著差异(P>0.05),均介于1.40~1.90之间,因此,长寿湖CDOM来源具有内源和外源双重特性,和采样点周边生态系统差异性无关. 自生源指数(autochthonous index,BIX): λEx=310 nm时发射波长380 nm与430 nm处荧光强度比值(λEx=310 nm,f380/430),用于衡量新生(自生源)相对贡献,BIX值>1.0,表示DOM主要源于自生源且有机质为新近产生; 0.8~1.0表示存在较多新生的内源DOM; 0.6~0.8表示样品中自生源贡献较少[43~45]. 5个采样点BIX年均值均小于1.0,变化范围为(0.79±0.04)~(0.84±0.05)[图 9(b)]. 除S2各别样本外,5处BIX值均大于0.8,说明CDOM自生源贡献较为明显,生物可利用性较高. 结合SUVA和S(275~295),与其他受森林生态系统影响显著的湖泊[46, 47]相比,长寿湖水体整体腐殖化程度不高,自生源对DOM贡献较大,该结果与文献[17]一致. 回水区(S3)和入湖区(S4)相对较高的BIX值进一步呼应其低芳香性(高SUVA280值)低分子量(低S(275~295)值)的特征,水体CDOM以新近生产为主. 尽管沿岸人工林系统发达,陆源可以向S5点输入芳香性特征较高的有机质(高SUVA280),但是由于旅游业发达,人为导致的有限污水排放,也可能是导致该点DOM内源性特征同样显著的重要原因.
![]() |
图 9 荧光光谱参数的均值描述 Fig. 9 Descriptive statistics of average concentrations of fluorescence spectrum parameters |
r(A/C)为荧光峰A和C的荧光强度比值,由于A峰主要来自高荧光效率的类腐殖组分,C峰则来自相对稳定的类腐殖组分; 因此r(A/C)值可用来反映DOM中类腐殖组分相对组成[35, 42]; r(T/C)为荧光峰T和C荧光强度比值,可用以评价内源贡献比重,近几年该值也用来评估水体污染情况,人为排放污染信号较强的水体,r(T/C)值>2.0[39, 48]. 各采样点r(A/C)与 r(T/C)年均值情况[图 9(c)和9(d)]所示: r(A/C)值在(2.17±0.39)~(2.26±0.13)范围内变化且5个采样点之间无显著差异(P>0.05),而r(T/C)值的变化范围是(2.14±1.19)~(2.58±0.91)且均大于2.0,说明长寿湖水体新生腐殖质组分较多,受人为排放污染影响较大且影响程度随空间变化而不同. 由此可知,沿岸生态系统的差异性对r(A/C)影响有限,但对r(T/C)仍存在影响.
图 10为r(A/C)- r(T/C)分布,大部分样本点位于2.0分界线以上,这意味着整个湖区DOM都在不同程度上受到人为干扰. 但其中以S1样本数超过80%大于2.0分界线,这可能由于S1点位于水库坝前,不同来源的有机质的积累导致其人为干扰特征明显; 而受沿岸旅游业开发影响,S5点也有超过40%样本数大于2.0分界线; 而内源特征显著的S4点样本数(大于2.0分界线)最小,由此可以肯定该入湖区较高BIX值和较强的类蛋白信号,主要还是来自于水体微生物和藻类等内源贡献; 但另一入湖区S2由于沿岸居民较多,因此有超过55%的DOM样本受到人为排放影响.
![]() |
图 10 CDOM的r(A/C)-r(T/C)分布 Fig. 10 Distributions of r(A/C)-r(T/C) values of CDOM in Changshou Lake |
(1) 长寿湖不同采样点DOM浓度(DOC和CDOM)存在空间分布差异,但各点FDOM分布较为稳定. 结合沿岸生态系统分析可知,回水区S3的DOM由于受陆源输入影响有限,水体内源活动主导,具有较明显“内源控制”特征,芳香性和分子量相对较低; 而S5点周边陆地以人工林兼旅游开发为主,陆源输入在带入较多腐殖化(高芳香性)组分的同时,人为活动排放也输入蛋白质、 多糖等物质; 作为入湖区S2尽管周边果林和居民生活对水体DOM有一定影响,但是上游河流的输入也不容忽视.
(2) 另外,各采样点均呈现芳香性特征常数(SUVA280)和光谱斜率[S(275~295)]显著负相关、 CDOM和FDOM极显著正相关、 CDOM和S(275~295)显负相关——这些显著相关性和周边生态系统差异无关. 长寿湖水体CDOM的生色团主要由具有芳香性结构的大分子组分构成; 至少51%的CDOM波动可以通过FDOM变化来进行解释,其中回水区荧光组分对CDOM变动的影响最为明显.
(3) 在采用传统FI值无法区分DOM来源差异性时,结合采样点沿岸生态系统,综合紫外-可见和荧光光谱特征,有助于对DOM组成及来源进行解析.
[1] | Rochelle-Newall E J, Fisher T R. Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay[J]. Marine Chemistry , 2002, 77 (1) : 23–41. DOI:10.1016/S0304-4203(01)00073-1 |
[2] | 吴丰昌, 王立英, 黎文, 等. 天然有机质及其在地表环境中的重要性[J]. 湖泊科学 , 2008, 20 (1) : 1–12. Wu F C, Wang L Y, Li W, et al. Natural organic matter and its significance in terrestrial surface environment[J]. Journal of Lake Sciences , 2008, 20 (1) : 1–12. DOI:10.18307/2008.0101 |
[3] | Lou T, Xie H X, Chen G H, et al. Effects of photodegradation of dissolved organic matter on the binding of benzo (a) pyrene[J]. Chemosphere , 2006, 64 (7) : 1204–1211. DOI:10.1016/j.chemosphere.2005.11.043 |
[4] | Hendrickson J, Trahan N, Gordon E, et al. Estimating relevance of organic carbon, nitrogen, and phosphorus loads to a Blackwater river estuary[J]. JAWRA Journal of the American Water Resources Association , 2007, 43 (1) : 264–279. DOI:10.1111/jawr.2008.43.issue-1 |
[5] | Wang Y, Zhang D, Shen Z Y, et al. Characterization and spacial distribution variability of chromophoric dissolved organic matter (CDOM) in the Yangtze Estuary[J]. Chemosphere , 2014, 95 : 353–362. DOI:10.1016/j.chemosphere.2013.09.044 |
[6] | 郭卫东, 程远月, 余翔翔, 等. 海洋有色溶解有机物的光化学研究进展[J]. 海洋通报 , 2008, 27 (3) : 107–114. Guo W D, Cheng Y Y, Yu X X, et al. An overview of the photochemistry of marine chromophoric dissolved organic matter[J]. Marine Science Bulletin , 2008, 27 (3) : 107–114. |
[7] | 姜广甲, 刘殿伟, 宋开山, 等. 长春市石头口门水库CDOM的光学特性[J]. 中国科学院研究生院学报 , 2009, 26 (5) : 640–646. Jiang G J, Liu D W, Song K S, et al. Optical properties of CDOM in Shitoukoumen Reservoir, Changchun[J]. Journal of the Graduate School of the Chinese Academy of Sciences , 2009, 26 (5) : 640–646. |
[8] | Kowalczuk P, Durako M J, Young H, et al. Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: interannual variability[J]. Marine Chemistry , 2009, 113 (3-4) : 182–196. DOI:10.1016/j.marchem.2009.01.015 |
[9] | 周倩倩, 苏荣国, 白莹, 等. 舟山渔场有色溶解有机物(CDOM)的三维荧光-平行因子分析[J]. 环境科学 , 2015, 36 (1) : 163–171. Zhou Q Q, Su R G, Bai Y, et al. Characterization of chromophoric dissolved organic matter (CDOM) in Zhoushan fishery using excitation-emission matrix spectroscopy (EEMs) and Parallel factor analysis (PARAFAC)[J]. Environmental Science , 2015, 36 (1) : 163–171. |
[10] | Stedmon C A, Markager S, Kaas H. Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters[J]. Estuarine, Coastal and Shelf Science , 2000, 51 (2) : 267–278. DOI:10.1006/ecss.2000.0645 |
[11] | Fichot C G, Benner R. A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters[J]. Geophysical Research Letters , 2011, 38 (3) : L03610. |
[12] | Spencer R G M, Butler K D, Aiken G R. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA[J]. Journal of Geophysical Research , 2012, 117 (G3) : G03001. |
[13] | Swan C M, Nelson N B, Siegel D A, et al. The effect of surface irradiance on the absorption spectrum of chromophoric dissolved organic matter in the global ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers , 2012, 63 : 52–64. DOI:10.1016/j.dsr.2012.01.008 |
[14] | Guo X J, Xi B D, Yu H B, et al. The structure and origin of dissolved organic matter studied by UV-vis spectroscopy and fluorescence spectroscopy in lake in arid and semi-arid region[J]. Water Science and Technology , 2011, 63 (5) : 1011–1017. DOI:10.2166/wst.2011.283 |
[15] | 邵田田, 赵莹, 宋开山, 等. 辽河下游CDOM吸收与荧光特性的季节变化研究[J]. 环境科学 , 2014, 35 (10) : 3755–3763. Shao T T, Zhao Y, Song K S, et al. Seasonal variation in the absorption and fluorescence characteristics of CDOM in downstream of Liaohe River[J]. Environmental Science , 2014, 35 (10) : 3755–3763. |
[16] | 宋晓娜, 于涛, 张远, 等. 利用三维荧光技术分析太湖水体溶解性有机质的分布特征及来源[J]. 环境科学学报 , 2010, 30 (11) : 2321–2331. Song X N, Yu T, Zhang Y, et al. Distribution characterization and source analysis of dissolved organic matters in Taihu Lake using three dimensional fluorescence excitation-emission matrix[J]. Acta Scientiae Circumstantiae , 2010, 30 (11) : 2321–2331. |
[17] | 卢松, 江韬, 张进忠, 等. 两个水库型湖泊中溶解性有机质三维荧光特征差异[J]. 中国环境科学 , 2015, 35 (2) : 516–523. Lu S, Jiang T, Zhang J Z, et al. Three-dimensional fluorescence characteristic differences of dissolved organic matter (DOM) from two typical reservoirs[J]. China Environmental Science , 2015, 35 (2) : 516–523. |
[18] | 王齐磊, 江韬, 赵铮, 等. 三峡库区典型农业小流域土壤溶解性有机质的紫外-可见及荧光特征[J]. 环境科学 , 2015, 36 (3) : 879–887. Wang Q L, Jiang T, Zhao Z, et al. Ultraviolet-visible (UV-Vis) and fluorescence spectral characteristics of soil dissolved organic matter (DOM) in typical agricultural watershed of Three Gorges reservoir region[J]. Environmental Science , 2015, 36 (3) : 879–887. |
[19] | 王齐磊, 江韬, 赵铮, 等. 三峡库区典型农业小流域水体中溶解性有机质的光谱特征[J]. 环境科学 , 2016, 37 (6) : 2082–2092. Wang Q L, Jiang T, Zhao Z, et al. Spectral characteristics of dissolved organic matter (DOM) in waters typical agricultural watershed of Three Gorges reservoir areas[J]. Environmental Science , 2016, 37 (6) : 2082–2092. |
[20] | 白薇扬, 张成, 赵铮, 等. 三峡库区长寿湖水体不同形态汞的空间分布特征[J]. 环境科学 , 2015, 36 (8) : 2863–2869. Bai W Y, Zhang C, Zhao Z, et al. Spatial distribution characteristics of different species mercury in water body of Changshou Lake in Three Gorges reservoir region[J]. Environmental Science , 2015, 36 (8) : 2863–2869. |
[21] | 白薇扬, 张成, 唐振亚, 等. 长寿湖水库垂直剖面不同形态汞的季节变化特征及其影响因素[J]. 环境科学 , 2015, 36 (10) : 3649–3661. Bai W Y, Zhang C, Tang Z Y, et al. Seasonal variations in vertical profile of Hg species and the influential factors in Changshou Reservior[J]. Environmental Science , 2015, 36 (10) : 3649–3661. |
[22] | 张运林, 秦伯强. 梅梁湾、大太湖夏季和冬季CDOM特征及可能来源分析[J]. 水科学进展 , 2007, 18 (3) : 415–423. Zhang Y L, Qin B Q. Feature of CDOM and its possible source in Meiliang bay and Da Taihu lake in Taihu lake in summer and winter[J]. Advances in Water Science , 2007, 18 (3) : 415–423. |
[23] | 张明亮, 张运林, 秦伯强. 太湖入湖河口和开敞区CDOM吸收和三维荧光特征[J]. 湖泊科学 , 2009, 21 (2) : 234–241. Zhang M L, Zhang Y L, Qin B Q. Characterization of absorption and three-dimensional excitation-emission matrix spectra of chromophoric dissolved organic matter at the river inflow and the open area in Lake Taihu[J]. Journal of Lake Sciences , 2009, 21 (2) : 234–241. DOI:10.18307/2009.0212 |
[24] | Matsuoka A, Hooker S B, Bricaud A, et al. Estimating absorption coefficients of colored dissolved organic Matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space[J]. Biogeosciences , 2013, 10 (2) : 917–927. DOI:10.5194/bg-10-917-2013 |
[25] | 李璐璐, 江韬, 卢松, 等. 利用紫外-可见吸收光谱估算三峡库区消落带水体、土壤和沉积物溶解性有机质(DOM)浓度[J]. 环境科学 , 2014, 35 (9) : 3408–3416. Li L L, Jiang T, Lu S, et al. Using Ultraviolet-visible (UV-Vis) absorption spectrum to estimate the dissolved organic matter (DOM) concentration in water, soils and sediments of typical water-level fluctuation zones of the Three Gorges reservoir areas[J]. Environmental Science , 2014, 35 (9) : 3408–3416. |
[26] | Ferrari G M, Dowell M D, Grossi S, et al. Relationship between the optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in the southern Baltic Sea region[J]. Marine Chemistry , 1996, 55 (3-4) : 299–316. DOI:10.1016/S0304-4203(96)00061-8 |
[27] | Chin Y P, Aiken G, O'Loughlin E. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances[J]. Environmental Sciences &Technology , 1994, 28 (11) : 1853–1858. |
[28] | Chin Y P, Traina S J, Swank C R, et al. Abundance and properties of dissolved organic matter in pore waters of a freshwater wetland[J]. Limnology and Oceanography , 1998, 43 (6) : 1287–1296. DOI:10.4319/lo.1998.43.6.1287 |
[29] | Wong J C Y, Williams D D. Sources and seasonal patterns of dissolved organic matter (DOM) in the hyporheic zone[J]. Hydrobiologia , 2010, 647 (1) : 99–111. DOI:10.1007/s10750-009-9950-2 |
[30] | 高洁, 江韬, 闫金龙, 等. 天然日光辐照下两江交汇处溶解性有机质(DOM)光漂白过程: 以涪江-嘉陵江为例[J]. 环境科学 , 2014, 35 (9) : 3397–3407. Gao J, Jiang T, Yan J L, et al. Photobleaching of dissolved organic matter (DOM) from confluence of two rivers under natural solar radiation: a case study of Fujiang River-Jialingjiang River[J]. Environmental Science , 2014, 35 (9) : 3397–3407. |
[31] | Helms J R, Stubbins A, Ritchie J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography , 2008, 53 (3) : 955–969. DOI:10.4319/lo.2008.53.3.0955 |
[32] | Ortega-Retuerta E, Frazer T K, Duarte C M, et al. Biogeneration of chromophoric dissolved organic matter by bacteria and krill in the Southern Ocean[J]. Limnology and Oceanography , 2009, 54 (6) : 1941–1950. DOI:10.4319/lo.2009.54.6.1941 |
[33] | Fichot C G, Benner R. The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins[J]. Limnology and Oceanography , 2012, 57 (5) : 1453–1466. DOI:10.4319/lo.2012.57.5.1453 |
[34] | Kulovaara M, Corin N, Backlund P, et al. Impact of UV254-radiation on aquatic humic substances[J]. Chemosphere , 1996, 33 (5) : 783–790. DOI:10.1016/0045-6535(96)00233-0 |
[35] | Coble P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry , 1996, 51 (4) : 325–346. DOI:10.1016/0304-4203(95)00062-3 |
[36] | Nelson N B, Carlson C A, Steinberg D K. Production of chromophoric dissolved organic matter by Sargasso Sea microbes[J]. Marine Chemistry , 2004, 89 (1-4) : 273–287. DOI:10.1016/j.marchem.2004.02.017 |
[37] | 傅平青, 刘丛强, 吴丰昌. 溶解有机质的三维荧光光谱特征研究[J]. 光谱学与光谱分析 , 2006, 25 (12) : 2024–2028. Fu P Q, Liu C Q, Wu F C. Three-dimensional excitation emission matrix fluorescence spectroscopic characterization of dissolved organic matter[J]. Spectroscopy and Spectral Analysis , 2006, 25 (12) : 2024–2028. |
[38] | Murphy K R, Stedmon C A, Waite T D, et al. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy[J]. Marine Chemistry , 2008, 108 (1-2) : 40–58. DOI:10.1016/j.marchem.2007.10.003 |
[39] | Baker A. Fluorescence excitation-emission matrix characterization of river waters impacted by a tissue mill effluent[J]. Environmental Science &Technology , 2002, 36 (7) : 1377–1382. |
[40] | Baker A, Curry M. Fluorescence of leachates from three contrasting landfills[J]. Water Research , 2004, 38 (10) : 2605–2613. DOI:10.1016/j.watres.2004.02.027 |
[41] | Baker A, Ward D, Lieten S H, et al. Measurement of protein-like fluorescence in river and waste water using a handheld spectrophotometer[J]. Water Research , 2004, 38 (12) : 2934–2938. DOI:10.1016/j.watres.2004.04.023 |
[42] | Cory R M, McKnight D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced Quinones in dissolved organic matter[J]. Environmental Science &Technology , 2005, 39 (21) : 8142–8149. |
[43] | Huguet A, Vacher L, Relexans S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry , 2009, 40 (6) : 706–719. DOI:10.1016/j.orggeochem.2009.03.002 |
[44] | Birdwell J E, Valsaraj K T. Characterization of dissolved organic matter in fogwater by excitation-emission matrix fluorescence spectroscopy[J]. Atmospheric Environment , 2010, 44 (27) : 3246–3253. DOI:10.1016/j.atmosenv.2010.05.055 |
[45] | Birdwell J E, Engel A S. Characterization of dissolved organic matter in cave and spring waters using UV-Vis absorbance and fluorescence spectroscopy[J]. Organic Geochemistry , 2010, 41 (3) : 270–280. DOI:10.1016/j.orggeochem.2009.11.002 |
[46] | Erlandsson M, Futter M N, Kothawala DN, et al. Variability in spectral absorbance metrics across boreal lake waters[J]. Journal of Environmental Monitoring , 2012, 14 (10) : 2643–2652. DOI:10.1039/c2em30266g |
[47] | Su Y L, Chen F Z, Liu Z W. Comparison of optical properties of chromophoric dissolved organic matter (CDOM) in alpine lakes above or below the tree line: insights into sources of CDOM[J]. Photochemical &Photobiological Sciences , 2015, 14 (5) : 1047–1062. |
[48] | Galapate R P, Baes A U, Ito K, et al. Detection of domestic wastes in Kurose river using synchronous fluorescence spectroscopy[J]. Water Research , 1998, 32 (7) : 2232–2239. DOI:10.1016/S0043-1354(97)00426-0 |