2. 中国科学院地质与地球物理研究所兰州油气资源研究中心, 兰州 730000
2. Lanzhou Center for Oil and Gas Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, China
我国的玉米秸秆年产量为2.3亿t,其中23%被露天焚烧[1]. 正构脂肪酸是作物秸秆烟尘中常见的有机物[2],也是大气气溶胶的主要有机成分[3, 4]. 在收获季节秸秆燃烧是大气中正构脂肪酸的重要来源. 除此之外,正构脂肪酸还有其他多种来源. 植物风化碎屑中含有C12~C40的正构脂肪酸[5]. 木柴、 草、 煤、 泥炭等在燃烧过程会排放C8~C34的正构脂肪酸[6~9]. 机动车和燃油锅炉也排放正构脂肪酸[10~13]. 对不同生物质排放烟尘中正构脂肪酸的组成虽然已进行了大量的研究[2, 6, 7, 14~18],但就燃烧条件对烟 尘中正构脂肪酸分子和碳同位素组成的影响却关注较少. 初步的研究结果表明,在C4植物明火燃烧产生的烟尘中,正构脂肪酸的碳同位素组成比植物本身亏损2‰~6‰[19]. 而闷燃烟尘中的脂肪酸单体保存了植物中脂肪酸的碳同位素组成[20]. 本研究拟在模拟的明火燃烧和闷烧条件下对玉米秸秆进行燃烧试验,初步探讨不同燃烧条件对秸秆烟尘中正构脂肪酸的分子组成和碳同位素组成的影响.
1 材料与方法 1.1 秸秆采集与制备2011~2012年在陕西、 河南和江苏,分别采集了中单2号、 豫丰3358/掖单4号、 中甜9号等品种的玉米秸秆. 对于制备测定正构脂肪酸所用的秸秆样时,取适量完整的秸秆,剪至小段,用清水冲去表面的泥土. 将洁净的碎样在50℃烘烤12 h,用植物粉碎机粉碎至60目. 对于焚烧用的秸秆,在室内自然风干,临烧前拣去杂物,抖去灰尘.
1.2 燃烧试验与烟尘采集模拟秸秆的2种田间焚烧方式,明火燃烧和闷烧,在一容积为60 m3的房间内进行燃烧试验. 在模拟明火燃烧时,取每种秸秆1.5 kg,自然堆放在一张钢盘上点燃. 闷燃时取秸秆0.2 kg,放入燃烧炉后点燃. 通过调节挡板以控制进入燃烧室的空气量,使燃烧过程不产生火焰. 具体燃烧装置见文献[21]. 采样期间保持门窗关闭. 用2台小流量大气颗粒物采样器(Andersen,AH-200型)同时采集排放到室内空气中的烟尘. 采样器离火堆2 m,距地面1.2 m. 点燃秸秆后即开始采样,每个样持续采集1 h. 每次采样将收集到秸秆燃烧产生的大部分烟尘. 采样过程中也没有发生滤膜堵塞的现象. 采样所用的玻璃纤维滤膜(规格80 mm,孔径0.22 μm)在使用前于500℃灼烧2 h,冷却后置于干燥器中在室温下平衡24 h. 采样后的滤膜在室温下平衡24 h后再称重. PM2.5样品用铝箔(在500℃灼烧2 h)包裹,冷冻保存.
1.3 有机酸提取与测定称取玉米秸秆粉末1 g,或者取采集了烟尘的滤膜半张,每次加入二氯甲烷/甲醇混合液(2∶1,体积比)10 mL,在室温下超声振荡15 min,共重复提取3 次. 合并萃取液,用旋转蒸发器在40℃浓缩至3 mL,再用N2 吹仪在40℃浓缩至1 mL. 将浓缩液滴加于硅胶柱上,依次用30 mL 正己烷和甲醇洗脱烃类和极性组分. 硅胶柱长20cm,内径1 cm. 硅胶(60~100 目) 在使用前用二氯甲烷超声振荡提取2次,然后于150℃活化12 h. 在室温下加入3% (质量分数) 蒸馏水去活化,平衡24 h. 用旋转蒸发器和氮吹仪浓缩、 吹干极性馏分,用200 μL BF3/MeOH在60℃衍生2 h. 衍生液经氮吹后用二氯甲烷定容至0.5 mL.
用气相色谱-质谱联用仪(GC-MS)(6890N/5975 GC-MS 型,美国安捷伦公司)对上述衍生物进行分析. 色谱柱为HP-5MS(30 m×0.25 mm×0.25 μm)非极性石英毛细管色谱柱. 载气流量1 mL·min-1,气化室温度300℃,进样量1 μL(不分流). 升温程序: 初始温度60℃,保持2 min,以10℃·min-1 升温至300℃,保持20 min. 选取质量数为74的离子色谱峰面积进行外标法定量. 正十二酸甲酯~正二十四酸甲酯混合标准品购自Nu ChekPrep,Inc. 在分离测定实际样品之前,用正十六酸进行了加标回收试验,结果回收率达70%~110%.
用气相色谱/稳定同位素在线分析系统(GC/C/IRMS,Delta plus XP 型) 测定正构脂肪酸甲酯的单体碳同位素比值. 衍生试剂BF3/MeOH中甲醇的碳同位素比值用离线质谱仪(FinniganMAT-252 型)测量. 测定前在800℃氧化该衍生试剂,生成的CO2经净化后进行测定. 根据每种脂肪酸甲酯中加入碳原子的多少,以及脂肪酸甲酯和甲醇的碳同位素比值,以同位素质量平衡方程计算对应正构脂肪酸的碳同位素比值[19].
离线测量的仪器标准偏差<0.3‰,在线测量的标准偏差<0.5‰.
2 结果与讨论 2.1 玉米秸秆中正构脂肪酸的分子组成在4种玉米秸秆中正构脂肪酸由C8~C34组成(表 1). 这与前人的研究结果类似[22]. 其平均总含量为997.8 mg·kg-1. 低碳数(C6~C16)与高碳数(C17~C34)正构脂肪酸含量比(L/H)的平均值为0.9. 表明秸秆中低碳数正构脂肪酸的含量比高碳数的稍低. C18/C16、 C24/C16、 C24/C18等比值的平均值分别为0.39、 0.25、 0.63. 羧酸比值 [CAR=n-C24/(n-C22+n-C26)]的平均值为1.5. 该值处于C4植物的CAR值范围内[23]. 正构脂肪酸呈以C16、C24为主、 次峰碳数的双峰式分布,且具有明显的偶碳数优势(图 1). 其碳优势指数(CPI)的平均值为5.8,与C4植物的平均值相近[24].
![]() |
表 1 玉米秸秆及其烟尘中正构脂肪酸单体的含量和指标1)/mg·kg-1 Table 1 Proxies and contents of individual n-alkanoic acids in maize straw and its smoke/mg·kg-1 |
![]() |
图 1 玉米秸秆中正构脂肪酸单体的相对丰度分布 Fig. 1 Relative abundance distribution of individual n-alkanoic acids in maize straw |
在玉米秸秆的明火烟尘中,正构脂肪酸由C7~C34组成. 这与前人的研究结果基本一致[2],也类似于煤和草的烟尘中正构脂肪酸的组成[7,8]. 但与玉米秸秆相比,从烟尘中检出了碳数更低的C7. 烟尘中正构脂肪酸的平均总含量为13 895.0 mg·kg-1. 其L/H的平均值为1.1,明显大于秸秆. 表明在秸秆明火燃烧过程中新生成了部分低碳数的正构脂肪酸,而部分高碳数单体被消耗了. C18/C16的平均值为0.33. 该值稍小于玉米秸秆,但明显大于木柴和叶状植物所产烟尘的相应值[25]. C24/C16、 C24/C18、 CAR等的平均值分别为0.17、 0.50、 1.2,均明显小于秸秆. 与玉米秸秆类似,明火烟尘中正构脂肪酸也表现出以C16、 C24为主、 次峰碳数的双峰式分布模式. 其主峰碳数与草本植物烟尘、 成熟煤烟尘、 炊事油烟等的相同,但异于非成熟煤的烟尘[7, 8, 26, 27]. 其CPI的平均值为4.5. 该值比秸秆大幅减小,也远小于草本植物、 马铃薯秆和针叶树等生物质来源烟尘的CPI值[7, 17, 18].
2.3 闷烧烟尘中正构脂肪酸的分子组成在玉米秸秆的闷烧烟尘中,正构脂肪酸由C6~C34组成. 与明火烟尘相比,闷燃烟尘中C6和C7的含量大幅提高. 正构脂肪酸的平均总含量为50 183.7 mg·kg-1,是明火烟尘的3.6倍. 其L/H值的平均值为1.3,明显大于秸秆和明燃烟尘. 表明温度较低的闷烧过程有利于低碳数正构脂肪酸的保存. C18/C16的平均值为0.33,与明火烟尘的相等. C24/C16的平均值为0.20,介于玉米秸秆和明火烟尘之间. C24/C18的平均值为0.60,比秸秆稍小. CAR的平均值为1.6,与秸秆非常接近. C6~C34也具有与玉米秸秆和明火烟尘相同的双峰式分布模式. 其CPI的平均值为6.1. 该值比秸秆稍大,但明显大于明火烟尘,处于无烟煤烟尘的变化区间[28].
2.4 烟尘中正构脂肪酸的碳同位素在玉米秸秆的明火烟尘中,C14~C26正构脂肪酸单体的平均碳同位素比值(δ13C)的变化区间为-21.0‰~-24.8‰,总平均值为-23.5‰. 总体而言,不同碳数正构脂肪酸单体的δ13C值变化趋势与玉米秸秆是一致的(图 2). 但与秸秆相比,明火烟尘中正构脂肪酸单体的碳同位素组成偏轻. 其与秸秆中正构脂肪酸单体平均δ13C值之差(Δ13C)达-0.7‰. 表明明火烟尘中的正构脂肪酸发生了显著的碳同位素分馏. 在闷烧烟尘中,C14~C26正构脂肪酸单体δ13C平均值的变化范围为-21.8‰~-25.4‰,总平均值为-23.3‰. 不同单体间δ13C平均值的变化趋势也类似于玉米秸秆. 但与秸秆相比,闷烧烟尘中正构脂肪酸单体的碳同位素组成也是偏轻的. 其Δ13C值为-0.5‰,表明闷燃烟尘中的正构脂肪酸也发生了显著的碳同位素分馏. 但其分馏程度比明火燃烧有所减弱. 与其他C4植物燃烧形成的烟尘相比[19],玉米秸秆烟尘中正构脂肪酸的碳同位素分馏程度要低得多.
![]() |
图 2 玉米秸秆烟尘中正构脂肪酸碳同位素比值的变化趋势 Fig. 2 Variability of δ13C values for n-alkanoic acids in smoke from maize straw |
为了探讨玉米秸秆烟尘中正构脂肪酸在分子组成上的变化,利用CPI、 L/H、 C18/C16、 C24/C16、 C24/C18、 CAR等指标进行了讨论. 与秸秆相比,明火烟尘和闷烧烟尘中的6个指标均发生了不同程度的变化. 两种烟尘的C18/C16平均值相等,且均稍小于秸秆. 该比值落于机动车尾气的变化区间[25],故不能据此区分大气颗粒物中这两种来源的正构脂肪酸. 在闷烧烟尘和明火烟尘中,L/H平均值均明显大于秸秆. 明火烟尘的CPI、 C24/C16、 C24/C18、 CAR等指标的平均值均明显减小,而闷烧烟尘的却变化较小. 由此可见,在上述6个指标中,除了CPI能够反映玉米秸秆烟尘中正构脂肪酸的分子组成特点外,其余5个比值指标也是如此. 另外,玉米秸秆烟尘的C18/C16值也说明,用该比值识别大气气溶胶中正构脂肪酸的来源时要慎重.
3 结论(1) 玉米秸秆明火烟尘中的正构脂肪酸由C7~C34组成,且呈现以C16、 C24为主、 次峰碳数的双峰式分布. 其CPI值比秸秆大幅减小. 明火烟尘中低碳数正构脂肪酸的相对含量比秸秆明显增加,而C24/C16、 C24/C18、 CAR等比值却明显减小. 闷烧烟尘中的正构脂肪酸由C6~C34组成. 它们也具有与明火烟尘相同的分布模式,但CPI值比秸秆稍大. 闷烧烟尘中低碳数正构脂肪酸的相对含量明显高于明火烟尘,但C24/C16、 C24/C18、 CAR等指标与秸秆的相近. L/H、 C24/C16、 C24/C18、 CAR等指标可用于识别大气气溶胶中玉米秸秆燃烧来源的正构脂肪酸.
(2) 与玉米秸秆相比,其烟尘中C14~C26正构脂肪酸均发生了明显的碳同位素分馏. 且明火燃烧更有利于同位素分馏的发生.
致谢: 姚祁芳、 袁静、 姚发来等同志参与了野外秸秆的采集,作者在此表示感谢.[1] | Cao G L, Zhang X Y, Wang Y Q, et al. Estimation of emissions from field burning of crop straw in China[J]. Chinese Science Bulletin , 2008, 53 (5) : 784–790. DOI:10.1007/s11434-008-0145-4 |
[2] | Zhang Y X, Shao M, Zhang Y H, et al. Source profiles of particulate organic matters emitted from cereal straw burnings[J]. Journal of Environmental Sciences , 2007, 19 (2) : 167–175. DOI:10.1016/S1001-0742(07)60027-8 |
[3] | Choi J K, Ban S J, Kim Y P, et al. Molecular marker characterization and source appointment of particulate matter and its organic aerosols[J]. Chemosphere , 2015, 134 : 482–491. DOI:10.1016/j.chemosphere.2015.04.093 |
[4] | Kǐůmal K, Mikuška P, Večeǐa Z. Monosaccharide anhydrides, monocarboxylic acids and OC/EC in PM1 aerosols in urban areas in the Czech Republic[J]. Atmospheric Pollution Research , 2015, 6 (6) : 917–927. DOI:10.1016/j.apr.2015.04.001 |
[5] | Rogge W F, Hildemann L M, Mazurek M A, et al. Sources of fine organic aerosol. 4. Particulate abrasion products from leaf surfaces of urban plants[J]. Environmental Science &Technology , 1993, 27 (13) : 2700–2711. |
[6] | Gonçalves C, Alves C, Fernandes A P, et al. Organic compounds in PM2.5 emitted from fireplace and woodstove combustion of typical Portuguese wood species[J]. Atmospheric Environment , 2011, 45 (27) : 4533–4545. DOI:10.1016/j.atmosenv.2011.05.071 |
[7] | Oros D R, bin Abas M R, Omar N Y M J, et al. Identification and emission factors of molecular tracers in organic aerosols from biomass burning: Part 3. Grasses[J]. Applied Geochemistry , 2006, 21 (6) : 919–940. DOI:10.1016/j.apgeochem.2006.01.008 |
[8] | Oros D R, Simoneit B R T. Identification and emission rates of molecular tracers in coal smoke particulate matter[J]. Fuel , 2000, 79 (5) : 515–536. DOI:10.1016/S0016-2361(99)00153-2 |
[9] | George I J, Black R R, Geron C D, et al. Volatile and semivolatile organic compounds in laboratory peat fire emissions[J]. Atmospheric Environment , 2016, 132 : 163–170. DOI:10.1016/j.atmosenv.2016.02.025 |
[10] | Rogge W F, Hildemann L M, Mazurek M A, et al. Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks[J]. Environmental Science &Technology , 1993, 27 (4) : 636–651. |
[11] | Schauer J J, Kleeman M J, Cass G R, et al. Measurement of emissions from air pollution sources. 2. C1 through C30 organic compounds from medium duty diesel trucks[J]. Environmental Science &Technology , 1999, 33 (10) : 1578–1587. |
[12] | Schauer J J, Kleeman M J, Cass G R, et al. Measurement of emissions from air pollution sources. 5. C1-C32 organic compounds from gasoline-powered motor vehicles[J]. Environmental Science &Technology , 2002, 36 (6) : 1169–1180. |
[13] | Rogge W F, Hildemann L M, Mazurek M A, et al. Sources of fine organic aerosol. 8. Boilers burning No. 2 distillate fuel oil[J]. Environmental Science &Technology , 1997, 31 (10) : 2731–2737. |
[14] | bin Abas M R, Simoneit B R T, Elias V, et al. Composition of higher molecular weight organic matter in smoke aerosol from biomass combustion in Amazonia[J]. Chemosphere , 1995, 30 (5) : 995–1015. DOI:10.1016/0045-6535(94)00442-W |
[15] | Hays M D, Fine P M, Geron C D, et al. Open burning of agricultural biomass: physical and chemical properties of particle-phase emissions[J]. Atmospheric Environment , 2005, 39 (36) : 6747–6764. DOI:10.1016/j.atmosenv.2005.07.072 |
[16] | Medeiros P M, Simoneit B R T. Source profiles of organic compounds emitted upon combustion of green vegetation from temperate climate forests[J]. Environmental Science &Technology , 2008, 42 (22) : 8310–8316. |
[17] | Gonçalves C, Evtyugina M, Alves C, et al. Organic particulate emissions from field burning of garden and agriculture residues[J]. Atmospheric Research , 2011, 101 (3) : 666–680. DOI:10.1016/j.atmosres.2011.04.017 |
[18] | Oros D R, Simoneit B R T. Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 1. Temperate climate conifers[J]. Applied Geochemistry , 2001, 16 (13) : 1513–1544. DOI:10.1016/S0883-2927(01)00021-X |
[19] | Ballentine D C, Macko S A, Turekian V C. Variability of stable carbon isotopic compositions in individual fatty acids from combustion of C4 and C3 plants: implications for biomass burning[J]. Chemical Geology , 1998, 152 (1-2) : 151–161. DOI:10.1016/S0009-2541(98)00103-X |
[20] | Ballentine D C, Macko S A, Turekian V C, et al. Compound specific isotope analysis of fatty acids and polycyclic aromatic hydrocarbons in aerosols: implications for biomass burning[J]. Organic Geochemistry , 1996, 25 (1-2) : 97–104. DOI:10.1016/S0146-6380(96)00110-6 |
[21] | Liu G, Li J H, Xu H, et al. Isotopic compositions of elemental carbon in smoke and ash derived from crop straw combustion[J]. Atmospheric Environment , 2014, 92 : 303–308. DOI:10.1016/j.atmosenv.2014.04.042 |
[22] | Wiesenberg G L B, Schwarzbauer J, Schmidt M W I, et al. Source and turnover of organic matter in agricultural soils derived from n-alkane/n-carboxylic acid compositions and C-isotope signatures[J]. Organic Geochemistry , 2004, 35 (11-12) : 1371–1393. DOI:10.1016/S0146-6380(04)00122-6 |
[23] | Wiesenberg G L B, Dorodnikov M, Kuzyakov Y. Source determination of lipids in bulk soil and soil density fractions after four years of wheat cropping[J]. Geoderma , 2010, 156 (3-4) : 267–277. DOI:10.1016/j.geoderma.2010.02.026 |
[24] | Chikaraishi Y, Naraoka H. δ13 C and δD relationships among three n-alkyl compound classes (n-alkanoic acid, n-alkane and n-alkanol) of terrestrial higher plants[J]. Organic Geochemistry , 2007, 38 (2) : 198–215. DOI:10.1016/j.orggeochem.2006.10.003 |
[25] | Rogge W F, Medeiros P M, Simoneit B R T. Organic marker compounds for surface soil and fugitive dust from open lot dairies and cattle feedlots[J]. Atmospheric Environment , 2006, 40 (1) : 27–49. DOI:10.1016/j.atmosenv.2005.07.076 |
[26] | He L Y, Hu M, Huang X F, et al. Measurement of emissions of fine particulate organic matter from Chinese cooking[J]. Atmospheric Environment , 2004, 38 (38) : 6557–6564. DOI:10.1016/j.atmosenv.2004.08.034 |
[27] | Zhao Y L, Hu M, Slanina S, et al. The molecular distribution of fine particulate organic matter emitted from Western-style fast food cooking[J]. Atmospheric Environment , 2007, 41 (37) : 8163–8171. DOI:10.1016/j.atmosenv.2007.06.029 |
[28] | Bi X H, Simoneit B R T, Sheng G Y, et al. Characterization of molecular markers in smoke from residential coal combustion in China[J]. Fuel , 2008, 87 (1) : 112–119. DOI:10.1016/j.fuel.2007.03.047 |