环境科学  2016, Vol. 37 Issue (10): 3963-3970   PDF    
生活污水灌溉对麦秸还田稻田氨挥发排放的影响
徐珊珊1,2 , 侯朋福2 , 范立慧1,2 , 薛利红2 , 杨林章2,3 , 王绍华1 , 李刚华1     
1. 南京农业大学农业部南方作物生理生态重点开放实验室, 南京 210095;
2. 江苏省农业科学院农业资源与环境研究所, 南京 210014;
3. 江苏滩涂生物农业协同创新中心, 盐城 224002
摘要: 以养分回用为目的,在原状土柱模拟试验条件下,采用间歇密闭式抽气法研究了生活污水灌溉对麦秸还田稻田田面水铵态氮浓度、田面水pH以及稻田氨挥发损失的影响.结果表明:1麦秸还田显著增加了田面水NH4+-N浓度,生活污水灌溉则显著降低了田面水NH4+-N浓度. 2正常灌溉施肥秸秆不还田稻田处理的总氨挥发量为58.29 kg·hm-2,占总施氮量的24.29%;麦秸还田显著增加了稻田的氨挥发损失,氨挥发损失量增加了近一倍,达总施氮量的45.66%;而生活污水灌溉显著降低了稻田氨挥发损失量,氨挥发损失量降至总施肥量的17.26%(秸秆不还田)和32.72%(秸秆还田).秸秆还田与生活污水处理具有显著的正交互作用.在3个肥期中,分蘖肥期氨挥发损失率最高,占总氮肥用量的7.38%~24.44%. 3无论秸秆还田与否,氨挥发通量与田面水NH4+-N浓度之间均存在极显著的正相关关系,与田面水pH值则相关性不显著.麦秸还田增加了稻田氨挥发损失,而麦秸还田与生活污水灌溉耦合能降低稻田氨挥发损失,同时污水中的氮可替代44.41%的化肥氮,减少稻季化肥用量,具有显著的生态环境效益.
关键词: 稻田      秸秆还田      污水灌溉      氨挥发      田面水铵浓度     
Effect of Straw Incorporation and Domestic Sewage Irrigation on Ammonia Volatilization from Paddy Fields
XU Shan-shan1,2 , HOU Peng-fu2 , FAN Li-hui1,2 , XUE Li-hong2 , YANG Lin-zhang2,3 , WANG Shao-hua1 , LI Gang-hua1     
1. Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
2. Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
3. Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng 224002, China
Abstract: A pot experiment was conducted to study the effect of straw returning and domestic sewage irrigation on the dynamics of NH4+-N concentration and pH in the flood water, and ammonia volatilization of paddy fields. The results showed that the NH4+-N concentration in flood water was significantly increased by wheat straw returning while significantly decreased by domestic sewage irrigation. The cumulative ammonia volatilization in the whole rice season under tap water irrigation and straw removal treatment was 58.29 kg·hm-2, accounting for 24.29% of the total N applied. The N loss ratio of ammonia volatilization was significantly increased to 45.66% by wheat straw returning, while significantly decreased to 17.26% under straw removal and 32.72% under straw returning by domestic sewage irrigation. Significant positive interaction was observed between straw incorporation and domestic sewage irrigation on ammonia volatilization loss. The average N loss from ammonia volatilization during the tillering stage was the highest among the three fertilization stages, accounting for 7.38%-24.44% of the total N applied. In addition, ammonia volatilization fluxes showed a significant positive correlation with the flood water NH4+-N concentration, irrespective of the irrigation water, but had no significant correlation with pH. These results indicated that straw returning increased ammonia volatilization losses, whereas domestic sewage irrigation could effectively reduce ammonia volatilization losses and simultaneously replace 44.41% of chemical nitrogen fertilizer by the N contained in the domestic sewage. The combination of domestic sewage irrigation and straw returning would be an ecological and environmental-friendly measure for rice nitrogen management in Taihu Lake region.
Key words: paddy fields      straw returning      sewage irrigation      ammonia volatilization      NH4+-N concentration in the flood water     

随着水资源的日益短缺,污水资源化已成为全社会普遍关注的问题[1].农村生活污水主要由洗涤剂、垃圾和粪便等产生,其中具有大量含氮、磷等元素的无机盐类[2, 3].如果直接排放至水体,不仅造成环境污染,更是一种资源的浪费.已有研究表明,利用土地处理系统,将生活污水用于农田灌溉[4, 5],既可实现生活污水的综合利用,达到节省水资源的目的,又能起到养分回用的目的[6, 7],并能够减少化肥的施用[2, 8, 9].前人关于污水灌溉对水稻生长和产量的影响研究较多[10, 11],但对氮素环境排放影响的研究较少.马资厚等[12]研究发现生活污水灌溉能降低水稻前期径流流失风险和基肥期的氨挥发损失. Zou等[11]发现稻田正常施肥下污灌增加了N2O排放.秸秆还田作为一项重要的保护性耕作措施,具有蓄水保墒、培肥土壤、节本增效等良好的社会、经济和生态效益,近年来得到了广泛的应用.在稻季还田时,由于秸秆具有较高的碳氮比,造成土壤氮的固定[13],会抑制水稻的前期生长[14, 15],进而影响水稻产量[16, 17].但是,稻季麦秸还田显著增加了田面水的NH4+-N浓度,增加了氮肥的氨挥发损失[18, 19].如汪军等[20]发现麦秸还田后,乌栅土和黄泥土稻田氨挥发损失分别增加了19.8%和20.3%,与秸秆不还田处理差异显著. Wang等[21]发现秸秆还田较不还田增加氨挥发损失28.5%.而氨挥发损失是稻田氮素损失的主要途径[22],约占施氮量的9%~40%[21, 23, 24].此外,秸秆因其较高的碳氮比,还田后会造成氮的短期固定现象[14, 15],而生活污水中含有大量的无机氮源,碳氮比含量较低,秸秆还田条件下耦合生活污水灌溉,是否能影响土壤以及田面水氮动态,减少氨挥发排放等还有待于进一步研究证实.为此,本研究开展了麦秸还田条件下的污水灌溉原状土柱模拟试验,以自来水处理为对照,分析了秸秆还田以及污水灌溉对稻田田面水氮浓度以及土壤氨挥发的影响,以期明确污水灌溉是否能减少秸秆还田稻田的氨挥发损失.

1 材料与方法 1.1 试验概况

试验于江苏省农业科学院进行,供试水稻土壤取自于太湖流域宜兴周铁镇,为黄泥土.耕作层土壤基本理化性质如下: pH 5.60、全氮1.62g ·kg-1、全磷0.40g ·kg-1、碱解氮156.42 mg ·kg-1、速效磷18.23 mg ·kg-1、速效钾136 mg ·kg-1.生活污水与自来水的水质成分如表 1,各项指标均符合农田灌溉水水质标准.

表 1 供试生活污水和自来水的水质 Table 1 Properties of the experiment sewage and tap water

1.2 试验设计

试验采用原状模拟土柱,土柱高度为100 cm,直径为30 cm.试验设置6个处理,分别为秸秆还田正常施肥+污水灌溉(SWN1)、秸秆还田正常施肥+自来水灌溉(STN1)、秸秆还田不施肥+自来水灌溉(STN0)、正常施肥+污水灌溉(WN1)、正常施肥+自来水灌溉(TN1)、不施肥+自来水灌溉(TN0),每个处理3次重复.本研究所用化学氮肥为尿素,整个生育期中总氮施用量为240 kg ·hm-2(包括污水中灌溉带入的氮),氮肥运筹是基肥占30%,蘖肥占30%,穗肥占40%,分别于6月22日、7月2日、8月12日施用(表 2).每个处理的磷钾肥用量相同,分别为P2O5: 150 kg ·hm-2,K2O: 100 kg ·hm-2,作基肥一次性施入.水稻于6月22日进行移栽,11月5日收获.水分管理为分蘖期和拔节期之间晒田一次,收获前期稻田自然落干,其余时间保持田间2~5 cm水层的淹水状态.灌溉前取样分析污水和自来水的pH、TN等指标,记录灌溉水量,根据灌溉水中总氮浓度和灌溉水量计算当次灌溉由生活污水带入稻田系统的总氮量.蘖肥的化肥氮用量由本次追肥应投入总氮量减去之前因灌溉水源而带入的氮量,穗肥的化肥氮量由本次追肥应投入总氮量减去蘖肥到穗肥期由灌溉水源带入的氮及灌浆期灌溉可能带入的氮量,从而保证各处理间总氮素投入量一致.当灌浆期生活污水处理的总氮投入量达到预期用量时,即采用自来水灌溉至收获.秸秆添加量是根据小麦亩产量为400 kg、收获指数0.35进行全量还田折算.

表 2 各处理氮肥施用情况/kg ·hm-2 Table 2 Nitrogen application in different treatments/kg ·hm-2

1.3 样品的采集与测定

采用密闭室法测定氨挥发量,每次施肥后7 d内连续每天测定,其他时候每隔5~7 d测定一次,每次09:00~11:00和15:00~17:00共测定4 h,并计算出每天的总氨挥发量[20, 25, 26].

氨挥发测定的同时同步采集田面水样,并于每天下午14:00~16:00用型号为PHS-3C的pH仪测定田面水pH.采集水样后用型号为SKALAR的连续流动分析仪测定NH4+-N浓度.

1.4 数据处理

数据计算和分析采用Microsoft Excel 2007和SPSS 19.0统计软件进行方差分析;绘图采用Origin 8.0软件.

2 结果与分析 2.1 田面水中NH4+-N浓度变化动态

施肥后,田面水NH4+-N浓度在第1~3 d达到峰值,随后逐渐降低,至第7 d左右时降至最低值,3次施肥后不同处理间田面水NH4+-N浓度曲线变化趋势相似(图 1).蘖肥时期田面水NH4+-N浓度最高,显著高于基、穗肥时期,穗肥期最低.氮肥施用显著增加了田面水NH4+-N浓度,不施氮处理的田面水NH4+-N浓度显著低于各个施肥处理.与不还田相比,秸秆还田后的田面水NH4+-N浓度均高于不还田处理,蘖肥期峰值分别较不还田处理高67.5%(污水灌溉)和60.9%(自来水灌溉).污水灌溉处理降低了田面水NH4+-N浓度,蘖肥期峰值分别较自来水灌溉低25.9%(秸秆还田)和28.8%(秸秆不还田),不受秸秆是否还田的影响.

B表示基肥、 T表示蘖肥、 P表示穗肥,下同 图 1 不同处理的田面水NH4+-N浓度动态变化 Fig. 1 Dynamics of NH4+-N concentrations in surface water under different treatments

2.2 田面水pH变化动态

各处理的田面水pH均为中性偏碱(>6.5).施肥后,田面水pH均表现为短暂升高,于第2 d或第3 d达到峰值,随后逐渐降低,水稻生育后期田面水pH值有增加趋势. 3次施肥后不同处理田面水pH曲线变化趋势相似.氮肥施用显著增加了田面水pH,不施氮处理的田面水pH显著低于各个施肥处理.与不还田相比,秸秆还田后的田面水pH略高于不还田处理,但差异不显著.污水灌溉处理降低了田面水pH,不受秸秆是否还田的影响(图 2).

图 2 不同处理的田面水pH动态变化 Fig. 2 Dynamics of surface water pH under different treatments

2.3 稻季氨挥发动态

施肥后,氨挥发通量在第2 d或第3 d达到峰值,随后逐渐降低,至第7 d左右时降至最低值,3次施肥后不同处理间氨挥发量曲线变化趋势相似(图 3).蘖肥时期氨挥发量最高,各处理氨挥发通量的峰值在1.18~22.64 kg ·(hm2 ·d)-1之间,显著高于基、穗肥时期,穗肥期最低.氮肥施用显著增加了氨挥发量,不施氮处理的氨挥发通量显著低于各个施肥处理.秸秆还田后的氨挥发通量均高于不还田处理,蘖肥期峰值分别较不还田处理高3.7倍(污水灌溉)和2.2倍(自来水灌溉).污水灌溉处理降低了氨挥发速率,蘖肥期峰值分别较自来水灌溉低31.9%(秸秆还田)和54.0%(秸秆不还田),不受秸秆是否还田的影响.

图 3 不同处理的氨挥发通量变化 Fig. 3 Dynamics of ammonia volatilization flux under different treatments

2.4 累积氨挥发损失量

氮肥施用显著提高了水稻整个生育期的氨挥发总量,秸秆还田下增加了3~4倍,秸秆不还田时增加了2~3倍(表 3).氨挥发损失量蘖肥期最高,占总损失量的42.72%~62.18%,明显高于基肥和穗肥期,穗肥期最小.秸秆还田后,无论是污水灌溉还是自来水灌溉,施氮处理在各个肥期的氨挥发总损失量均明显增加,氨挥发损失量达总施氮量的32.72%~45.66%,占施化肥氮量的47.91%~58.85%;蘖肥期和穗肥期差异显著,整个生育期的氨挥发总量约增加了1倍左右;但对不施氮肥处理的影响不显著,仅提高了穗肥期及其以后的氨挥发量,总氨挥发量提高了24%左右.在同等施氮条件下,无论秸秆是否还田,生活污水灌溉明显降低了施肥期的氨挥发量,略微增加了灌浆期的氨挥发量,总累积氨挥发量表现为降低,降至总施氮量的17.26%~32.72%分别较自来水组低28.34%(秸秆还田)和28.92%(秸秆不还田).秸秆还田显著增加了基肥、蘖肥、灌浆期氨挥发量以及总量,对穗肥期影响不显著;污水灌溉显著增加了3个肥期氨挥发量和总量,对灌浆期影响不显著;秸秆还田与污水灌溉的耦合具有显著的正交互作用,显著增加了氨挥发总损失量,但对各个肥期影响不显著.

表 3 稻季不同肥期氨挥发损失量与比例1) Table 3 Volumes and ratios of cumulative ammonia emission in different periods of paddy season

3 讨论

稻田氨挥发是指稻田田面水中游离的NH4+转换为气态NH3后经水面挥发到空气中的过程,是一个复杂的动力学过程.因此,稻田氨挥发主要受田面水NH4+-N浓度、pH以及农业管理措施如肥料种类和施氮量等的影响[4, 27].前人研究表明,田间氨挥发速率的动态变化主要受到田面水中NH4+-N浓度的控制[28],田面水中NH4+-N浓度决定了氨气挥发潜能,田面水NH4+-N浓度作为稻田氨挥发的重要驱动因子,其差异会对稻田氨挥发速率产生较大的影响[29].因此,可通过合理施肥、改变肥料特性等措施来设法降低施肥后田面水NH4+-N浓度,进而减少稻田化肥氮的损失[30, 31].本研究也发现稻季田面水NH4+-N浓度和田面水pH的动态变化趋势均与氨挥发通量的动态特征相似(图 1~3),氨挥发通量与田面水中NH4+-N浓度间呈极显著(P<0.05)正相关关系(r=0.799 **N=198),与前人的结果一致[23, 32, 33].施氮后1~3d田面水中NH4+-N浓度迅速升高并达到峰值(图 1),表明田面水中NH4+-N浓度主要受施氮量的影响,这是由于施肥时期主要在6~8月,高温使得尿素以铵态氮的形式快速释放出来[34].麦秸还田增加了田面水NH4+-N浓度,显著高于秸秆不还田,这是由于秸秆还田能够促进尿素水解,从而提高田面水NH4+-N浓度[21, 35, 36].污水灌溉相比自来水灌溉能够显著降低田面水NH4+-N浓度:一方面污水灌溉减少了化肥速效性无机氮-尿素的施用量[2];另一方面,污水中高含量的氨氮进入土壤后,大部分被土壤胶体所吸附[37],迁移能力差,并且污灌提供的有效铵态氮(表 1)强化了土壤的硝化作用,铵态氮快速转化为硝态氮,因此使田面水中NH4+-N浓度降低[38].污水灌溉和秸秆还田处理存在着显著的交互作用,能够显著降低NH4+-N浓度,这可能与污水中自带的微生物种类及其对土壤微生物活动的影响有关[39, 40].污水中富含铵态氮,是影响土壤氨氧化细菌群落结构的重要因子[41, 42],污灌后土壤中氨氧化细菌含量显著高于清水灌溉[12],而土壤中氨氧化细菌可矿化秸秆中大量有机氮源[43]成NH4+-N供植物和微生物吸收利用,并能氧化铵态氮成硝态氮、亚硝态氮[40].秸秆还田与污水灌溉两者耦合后,有效降低了田面水氨氮浓度,因此降低了氨挥发损失.

田面水pH也是影响稻田氨挥发的一个重要因素.田面水pH升高可以加快NH4+向NH3转化速率,从而提高氨挥发速率[21, 44].麦秸还田略微增加了田面水pH,而污水灌溉处理则略微降低了田面水pH,这也是麦秸还田处理氨挥发增加、污水灌溉处理氨挥发降低的一个原因.但本研究中氨挥发通量与田面水pH并未呈显著的相关性,这可能是因为试验为小区试验,供试土壤相同,灌溉污水与自来水的pH值较为相似,因此对各个处理田面水pH的影响不显著.

除了田面水氨浓度、pH等内在因素外,温度、风速、光照等外在环境因素的变化也会影响到氨挥发动态.本研究采用的是统一的外部环境试验条件和相同的施氮量,因此,处理间对作物生长的影响也较小,各处理间温度、风速和光照等这些环境因素基本一致.然而,秸秆还田耦合污水灌溉后,可能会促进了秸秆的腐解而导致田面水温度发生变化,从而对氨挥发动态产生影响,这一点还有待于进一步研究.

稻田氨挥发损失总量是由水稻生长期氨挥发通量决定的. 图 3表明,不同处理氨挥发通量变化趋势相同,在施肥后1~3 d内达到峰值,随后逐渐降低,于7 d左右降至最低值,这与前人研究结果一致[23, 25].在整个生育期中,最大氨挥发通量发生在蘖肥期,穗肥期最小,这是因为蘖肥期时间较长,温度高光照强,促进了氨挥发的产生[23];而穗肥期稻田郁闭度较高,此时水稻植株生长旺盛、对养分的需求较高,加上气温相对较低,不利于氨挥发[45].因此,与基肥、穗肥期相比,蘖肥期氨挥发损失率最高,在7.38%~24.44%之间,其次为基肥期(5.21%~13.54%),穗肥期氨挥发损失率最低,仅有1.84%~5.51%,与前人[46, 47]关于太湖黄泥稻田土中追肥氨挥发损失量大于基肥的研究结果相符[48].不同处理间累积氨挥发损失量差异显著(表 3).麦秸还田较不还田处理显著增加了两种灌溉水中的累积氨挥发损失量,使整个生育期的氨挥发总量约增加了1倍左右;而污水灌溉组的氨挥发量分别较自来水组低28.34%(秸秆还田)和28.92%(秸秆未还田),差异显著.本研究表明,在秸秆还田稻田实施污水灌溉,不仅能有效减少化肥氮用量,还能减少秸秆还田带来的氨挥发损失增加的副作用,同时消纳和净化了污水,减少了对环境的污染,是一项值得应用的一举多得的农业管理措施.

4 结论

(1) 稻季麦秸还田显著增加了田面水NH4+-N浓度,污水灌溉则显著降低了田面水NH4+-N浓度.

(2) 相比秸秆不还田处理,稻季麦秸还田生活污水和自来水灌溉处理的累积氨挥发损失量分别增加了89.50%和88.0%.无论秸秆还田与否,生活污水灌溉均明显降低了整个稻季累积氨挥发量,分别较自来水组低28.34%(秸秆还田)和28.91%(秸秆不还田).

(3) 田面水NH4+-N浓度与氨挥发通量呈极显著的正相关关系,田块尺度下田面水pH则与其相关性不显著.

(4) 稻季麦秸还田耦合生活污水灌溉,可减少44.4%的化肥氮施用,并显著降低了稻田氨挥发,是一项值得应用的农业管理措施.

参考文献
[1] Jang T, Jung M, Lee E, et al. Assessing environmental impacts of reclaimed wastewater irrigation in paddy fields using bioindicator[J]. Irrigation Science , 2013, 31 (5) : 1225–1236. DOI:10.1007/s00271-013-0401-5
[2] Li S, Li H, Liang X Q, et al. Rural wastewater irrigation and nitrogen removal by the paddy wetland system in the Tai Lake region of China[J]. Journal of Soils and Sediments , 2009, 9 (5) : 433–442. DOI:10.1007/s11368-009-0095-8
[3] Kaboosi K. The assessment of treated wastewater quality and the effects of mid-term irrigation on soil physical and chemical properties (case study: Bandargaz-treated wastewater)[J]. Applied Water Science , 2016 : 1–12. DOI:10.1007/s13201-016-0420-5
[4] Sun H J, Zhang H L, Wu J S, et al. Laboratory lysimeter analysis of NH3 and N2O emissions and leaching losses of nitrogen in a rice-wheat rotation system irrigated with nitrogen-rich wastewater[J]. Soil Science , 2013, 178 (6) : 316–323.
[5] Hu H R, Wang H L, Kimberley M. Contents and movement of phosphorus in soil of long term effluent irrigated land forest[J]. Environmental Science , 2010, 31 (8) : 1951–1958. 胡慧蓉, 王海龙, KimberleyM. 长期污水灌溉后林地土壤中磷的含量与移动[J]. 环境科学 , 2010, 31 (8) : 1951–1958.
[6] Jeong H, Kim H, Jang T, et al. Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model[J]. Agricultural Water Management , 2016, 163 : 393–402. DOI:10.1016/j.agwat.2015.08.018
[7] Jang T I, Kim H K, Seong C H, et al. Assessing nutrient losses of reclaimed wastewater irrigation in paddy fields for sustainable agriculture[J]. Agricultural Water Management , 2012, 104 : 235–243. DOI:10.1016/j.agwat.2011.12.022
[8] Lu X J, Chen Y X. Research on wastewater from living irrigating farmland[J]. China Resources Comprehensive Utilization , 2005 (10) : 23–26. 路学军, 陈玉香. 生活污水用于农田灌溉的研究[J]. 中国资源综合利用 , 2005 (10) : 23–26.
[9] Wang H, Chen Y S, Hu K L, et al. Summary on wastewater Irrigation[J]. Jiangsu Environmental Science and Technology , 2007, 20 (2) : 73–76. 王浩, 陈玉松, 胡开林, 等. 污水灌溉研究综述[J]. 江苏环境科技 , 2007, 20 (2) : 73–76.
[10] Huang J Y, Hu X D, Yu Q R. Effects of sewage irrigation on growth of paddy[J]. Journal of Agricultural Mechanization Research , 2006 (1) : 177–179. 黄俊友, 胡晓东, 俞青荣. 污水灌溉对水稻生长影响的实验研究[J]. 农机化研究 , 2006 (1) : 177–179.
[11] Zou J W, Liu S W, Qin Y M, et al. Sewage irrigation increased methane and nitrous oxide emissions from rice paddies in southeast China[J]. Agriculture, Ecosystems & Environment , 2009, 129 (4) : 516–522.
[12] Ma Z H, Xue L H, Pan F Y, et al. Utilization of nitrogen in wastewater low in pollution degree in paddy fields and its effect on reducing fertilizer application in Tai Lake region[J]. Journal of Ecology and Rural Environment , 2016, 32 (4) : 570–576. 马资厚, 薛利红, 潘复燕, 等. 太湖流域稻田对3种低污染水氮的消纳利用及化肥减量效果[J]. 生态与农村环境学报 , 2016, 32 (4) : 570–576.
[13] Wang J, Guo X S, Wang Y Q, et al. Study on dynamics of nitrogen in different forms in surface water of paddy field under straw return[J]. Journal of Hydraulic Engineering , 2014, 45 (4) : 410–418. 王静, 郭熙盛, 王允青, 等. 秸秆还田条件下稻田田面水不同形态氮动态变化特征研究[J]. 水利学报 , 2014, 45 (4) : 410–418.
[14] Li Y, Cao H D, Chu Y Y, et al. Effects of wheat straw returning and nitrogen application model on rice yield and soil nitrogen supply[J]. Soils , 2010, 42 (4) : 569–573. 李勇, 曹红娣, 储亚云, 等. 麦秆还田氮肥运筹对水稻产量及土壤氮素供应的影响[J]. 土壤 , 2010, 42 (4) : 569–573.
[15] Zhang C H, Yang S J, Gu K J, et al. Effect of straw-returning on carbon and nitrogen assimilate translocation and yeild formation in wheat[J]. Acta Agriculturae Boreali-Sinica , 2013, 28 (6) : 214–219. 张传辉, 杨四军, 顾克军, 等. 秸秆还田对小麦碳氮转运和产量形成的影响[J]. 华北农学报 , 2013, 28 (6) : 214–219.
[16] Zhu L Q, Zhang D W, Bian X M. Effects of continuous returning straws to field and shifting different tillage methods on changes of physical-chemical properties of soil and yield components of rice[J]. Chinese Journal of Soil Science , 2011, 42 (1) : 81–85. 朱利群, 张大伟, 卞新民. 连续秸秆还田与耕作方式轮换对稻麦轮作田土壤理化性状变化及水稻产量构成的影响[J]. 土壤通报 , 2011, 42 (1) : 81–85.
[17] Li J F, Lu J W, Li X K, et al. Effect of wheat straw returning with different organic matter-decomposing inoculants (OMIs) on the yield of rice, the decomposition of straw and soil nutrients[J]. Chinese Agricultural Science Bulletin , 2013, 29 (35) : 270–276. 李继福, 鲁剑巍, 李小坤, 等. 麦秆还田配施不同腐秆剂对水稻产量、秸秆腐解和土壤养分的影响[J]. 中国农学通报 , 2013, 29 (35) : 270–276.
[18] Wang D J, Chang Z Z, Wang C, et al. Regulation and effect of 100% straw return on crop yield and environment[J]. Chinese Journal of Eco-Agriculture , 2015, 23 (9) : 1073–1082. 王德建, 常志州, 王灿, 等. 稻麦秸秆全量还田的产量与环境效应及其调控[J]. 中国生态农业学报 , 2015, 23 (9) : 1073–1082.
[19] Zhu J, Ji X H, Shi L H, et al. Advances in ammonia volatilization in paddy-field and its control technology[J]. Hunan Agricultural Sciences , 2011 (23) : 73–75, 84. 朱坚, 纪雄辉, 石丽红, 等. 稻田氨挥发及控制技术研究进展[J]. 湖南农业科学 , 2011 (23) : 73–75, 84.
[20] Wang J, Wang D J, Zhang G, et al. Comparing the ammonia volatilization characteristic of two typical paddy soil with total wheat straw returning in Taihu Lake region[J]. Environmental Science , 2013, 34 (1) : 27–33. 汪军, 王德建, 张刚, 等. 麦秸全量还田下太湖地区两种典型水稻土稻季氨挥发特性比较[J]. 环境科学 , 2013, 34 (1) : 27–33.
[21] Wang J, Wang D J, Zhang G, et al. Effect of wheat straw application on ammonia volatilization from urea applied to a paddy field[J]. Nutrient Cycling in Agroecosystems , 2012, 94 (1) : 73–84. DOI:10.1007/s10705-012-9527-8
[22] Li H L, Han Y, Cai Z C. Modeling the ammonia volatilization from common urea and controlled releasing urea fertilizers in paddy soil of Taihui region of China by Jayaweera-Mikkelsen model[J]. Environmental Science , 2008, 29 (4) : 1045–1052. 李慧琳, 韩勇, 蔡祖聪. 运用Jayaweera-Mikkelsen模型对太湖地区水稻田稻季氨挥发的模拟[J]. 环境科学 , 2008, 29 (4) : 1045–1052.
[23] Song Y S, Fan X H, Lin D X, et al. Ammonia volatilation from paddy fields in the Taihu Lake region and its influencing factors[J]. Acta Pedologica Sinica , 2004, 41 (2) : 265–269. 宋勇生, 范晓晖, 林德喜, 等. 太湖地区稻田氨挥发及影响因素的研究[J]. 土壤学报 , 2004, 41 (2) : 265–269.
[24] Shangguan Y X, Shi R P, Li N, et al. Factors influencing ammonia volatilization in a winter wheat field with plastic film mulched ridges and unmulched furrows[J]. Environmental Science , 2012, 33 (6) : 1987–1993. 上官宇先, 师日鹏, 李娜, 等. 垄作覆膜条件下田间氨挥发及影响因素[J]. 环境科学 , 2012, 33 (6) : 1987–1993.
[25] Chen A Q, Lei B K, Hu W L, et al. Characteristics of ammonia volatilization on rice grown under different nitrogen application rates and its quantitative predictions in Erhai Lake Watershed, China[J]. Nutrient Cycling in Agroecosystems , 2015, 101 (1) : 139–152. DOI:10.1007/s10705-014-9660-7
[26] Wang D J, Zhang G, Wang J, et al. Effects of dry deep-placement and wet broadcast of urea as basal in paddy field on nitrogen loss and plant N uptake[J]. Acta Pedologica Sinica , 2010, 47 (3) : 483–489. 王德建, 张刚, 汪军, 等. 水稻基肥尿素干施与湿施对氮素损失及水稻氮素吸收的影响[J]. 土壤学报 , 2010, 47 (3) : 483–489.
[27] Huda A, Gaihre Y K, Islam M R, et al. Floodwater ammonium, nitrogen use efficiency and rice yields with fertilizer deep placement and alternate wetting and drying under triple rice cropping systems[J]. Nutrient Cycling in Agroecosystems , 2016, 104 (1) : 53–66. DOI:10.1007/s10705-015-9758-6
[28] Pain B F, Van der Weerden T J, Chambers B J, et al. A new inventory for ammonia emissions from U. K. agriculture[J]. Atmospheric Environment , 1998, 32 (3) : 309–313. DOI:10.1016/S1352-2310(96)00352-4
[29] Deng O P, Jiang L N, Chen D J, et al. Ammonia volatilization from the biogas slurry irrigation paddy field[J]. Journal of Soil and Water Conservation , 2011, 25 (6) : 233–236. 邓欧平, 姜丽娜, 陈丁江, 等. 大量沼液施灌稻田的氨挥发特征[J]. 水土保持学报 , 2011, 25 (6) : 233–236.
[30] Li J M, Li D C, Xu M G, et al. Ammonia volatilization and its influence factors under different fertilization in red paddy soil with double rice cropping system[J]. Ecology and Environment , 2008, 17 (4) : 1610–1613. 李菊梅, 李冬初, 徐明岗, 等. 红壤双季稻田不同施肥下的氨挥发损失及其影响因素[J]. 生态环境 , 2008, 17 (4) : 1610–1613.
[31] Xue L H, Yu Y L, Yang L Z. Nitrogen balance and environmental impact of paddy field under different N management methods in Taihu Lake region[J]. Environmental Science , 2011, 32 (4) : 1133–1138. 薛利红, 俞映倞, 杨林章. 太湖流域稻田不同氮肥管理模式下的氮素平衡特征及环境效应评价[J]. 环境科学 , 2011, 32 (4) : 1133–1138.
[32] Wang X G, Hao M D, Chen L, et al. In situ study of ammonia volatilization from wheat cropland under long-term continuous fertilization[J]. Plant Nutrition and Fertilizer Science , 2006, 12 (1) : 18–24. 王旭刚, 郝明德, 陈磊, 等. 长期施肥条件下小麦农田氨挥发损失的原位研究[J]. 植物营养与肥料学报 , 2006, 12 (1) : 18–24.
[33] Huang J B, Fan X H, Zhang S L. Ammonia volatilization from nitrogen fertilizer in the rice field of Fe-leachi-Stagnic Anthrosols in the Taihu Lake region[J]. Acta Pedologica Sinica , 2006, 43 (5) : 786–792. 黄进宝, 范晓晖, 张绍林. 太湖地区铁渗水耕人为土稻季上氮肥的氨挥发[J]. 土壤学报 , 2006, 43 (5) : 786–792.
[34] Dong Z Z, Wu L H, Chai J, et al. Effects of nitrogen application rates on rice grain yield, nitrogen-use efficiency, and water quality in paddy field[J]. Communications in Soil Science and Plant Analysis , 2015, 46 (12) : 1579–1594. DOI:10.1080/00103624.2015.1045595
[35] Tian G M, Cai Z C, Cao J L, et al. Factors affecting ammonia volatilisation from a rice-wheat rotation system[J]. Chemosphere , 2001, 42 (2) : 123–129. DOI:10.1016/S0045-6535(00)00117-X
[36] Zhang J, Wang D J. Ammonia volatilization in gleyed paddy field soils of Taihu Lake region[J]. Chinese Journal of Eco-Agriculture , 2007, 15 (6) : 84–87. 张静, 王德建. 太湖地区乌栅土稻田氨挥发损失的研究[J]. 中国生态农业学报 , 2007, 15 (6) : 84–87.
[37] Jiang D A, Wang Y H, Tang Y D, et al. Transfer, transformation and accumulation of nitrogen compounds in soil and underground water[J]. Environmental Science , 1983, 4 (3) : 29–34. 江德爱, 王永华, 唐懿达, 等. 含氮化合物在土壤和地下水中的迁移转化和积累——生活污水中含氮化合物进入土壤后的动态研究[J]. 环境科学 , 1983, 4 (3) : 29–34.
[38] Jiang C L, Xia Z Q, Liu L, et al. Variation trends of three types of nitrogen in the soil and groundwater after wastewater irrigation[J]. Advances in Water Science , 1997, 8 (2) : 183–188. 姜翠玲, 夏自强, 刘凌, 等. 污水灌溉土壤及地下水三氮的变化动态分析[J]. 水科学进展 , 1997, 8 (2) : 183–188.
[39] Yu J, Yang M, Qi R, et al. Community structures of ammonia-oxidizing bacteria in different municipal wastewater treatment systems[J]. Acta Scientiae Circumstantiae , 2009, 29 (3) : 521–526. 于健, 杨敏, 齐嵘, 等. 城市污水处理系统中氨氧化细菌种群结构研究[J]. 环境科学学报 , 2009, 29 (3) : 521–526.
[40] Chopp K M.潘言明, 译.利用城市污水灌溉的土壤中氨氧化细菌的种群和活性[J].农业环境与发展, 1985, (2): 23-24. Chopp K M. Pan Y M, trans. Stocks and active of the soil AOB irrigated by municipal wastewater[J]. Agriculture Environment and Development, 1985, (2): 23-24.
[41] Lydmark P, Almstrand R, Samuelsson K, et al. Effects of environmental conditions on the nitrifying population dynamics in a pilot wastewater treatment plant[J]. Environmental Microbiology , 2007, 9 (9) : 2220–2233. DOI:10.1111/emi.2007.9.issue-9
[42] Otawa K, Asano R, Ohba Y, et al. Molecular analysis of ammonia-oxidizing bacteria community in intermittent aeration sequencing batch reactors used for animal wastewater treatment[J]. Environmental Microbiology , 2006, 8 (11) : 1985–1996. DOI:10.1111/emi.2006.8.issue-11
[43] Shi R, Chen X J, Shen J L, et al. A review on application of rice straw in soil carbon sequestration and greenhouse gases emission in paddy ecosystems[J]. Soils , 2013, 45 (2) : 193–198. 史然, 陈晓娟, 沈建林, 等. 稻田秸秆还田的土壤增碳及温室气体排放效应和机理研究进展[J]. 土壤 , 2013, 45 (2) : 193–198.
[44] Ni K, Ding W X, Cai Z C. Ammonia volatilization from soil as affected by long-term application of organic manure and chemical fertilizers during wheat growing season[J]. Journal of Agro-Environment Science , 2009, 28 (12) : 2614–2622. 倪康, 丁维新, 蔡祖聪. 有机无机肥长期定位试验土壤小麦季氨挥发损失及其影响因素研究[J]. 农业环境科学学报 , 2009, 28 (12) : 2614–2622.
[45] Cao J L, Tian G M, Ren L T, et al. Ammonia volatilization from urea applied to the field of wheat and rice in southern Jiangsu Province[J]. Journal of Nanjing Agricultural University , 2000, 23 (4) : 51–54. 曹金留, 田光明, 任立涛, 等. 江苏南部地区稻麦两熟土壤中尿素的氨挥发损失[J]. 南京农业大学学报 , 2000, 23 (4) : 51–54.
[46] Ye S C, Lin Z C, Dai Q G, et al. Effects of nitrogen application rate on ammonia volatilization and nitrogen utilization in rice growing season[J]. Chinese Journal of Rice Science , 2011, 25 (1) : 71–78. 叶世超, 林忠成, 戴其根, 等. 施氮量对稻季氨挥发特点与氮素利用的影响[J]. 中国水稻科学 , 2011, 25 (1) : 71–78.
[47] Deng M H, Yin B, Zhang S L, et al. Effects of rate and method of N application on ammonia volatilization in paddy fields[J]. Soils , 2006, 38 (3) : 263–269. 邓美华, 尹斌, 张绍林, 等. 不同施氮量和施氮方式对稻田氨挥发损失的影响[J]. 土壤 , 2006, 38 (3) : 263–269.
[48] Tian G M, Cai Z C, Cao J L, et al. Ammonia volatilization from paddy field and its affecting factors in Zhenjiang hilly region[J]. Acta Pedologica Sinica , 2001, 38 (3) : 324–332. 田光明, 蔡祖聪, 曹金留, 等. 镇江丘陵区稻田化肥氮的氨挥发及其影响因素[J]. 土壤学报 , 2001, 38 (3) : 324–332.