环境科学  2016, Vol. 37 Issue (8): 2914-2923   PDF    
青海南部高原积雪期与生长季高寒草甸土壤CO2、CH4和N2O通量的观测
吴建国 , 周巧富     
中国环境科学研究院, 北京 100012
摘要: 以静态箱采集气体和气相色谱分析气体浓度方法,测定分析了青海南部高原积雪期和生长季高寒草甸土壤CO2、CH4和N2O通量.结果表明在积雪集中期的3月3日和4日,积雪深度为9~10 cm时,土壤CO2通量为1.33 g·(m2·h)-1、N2O通量为0.21 mg·(m2·h)-1、CH4通量为-0.19 mg·(m2·h)-1;在积雪末期的4月30日,积雪深度在8~9 cm时,土壤CO2通量为4.70 g·(m2·h)-1、N2O通量为0.24 mg·(m2·h)-1、CH4通量为-1.23 mg·(m2·h)-1;积雪深度小于4 cm时,土壤CO2和N2O通量较低或为负值,土壤CH4通量为负值且绝对值较小.土壤CO2和N2O通量与积雪深度呈正相关、土壤CH4通量与积雪深度呈负相关(P < 0.05),土壤CO2与CH4通量及CH4与N2O通量间呈负相关、土壤CO2与N2O通量间呈正相关.土壤CO2和N2O通量在生长季较高、在积雪末期其次、在积雪集中期较低;土壤CH4通量为负值,其绝对值在生长季和积雪末期较大.结果说明积雪改变将影响青藏高原高寒草甸土壤温室气体通量.
关键词: 积雪      土壤温室气体      通量      气候变化      高寒草甸      青藏高原     
Soil CO2, CH4 and N2O Fluxes from Alpine Meadows on the Plateau of Southern Qinghai Province During Snow Cover Period and Growing Seasons
WU Jian-guo , ZHOU Qiao-fu     
Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Abstract: To understand the fluxes of soil greenhouse gases from Alpine meadows on the Qinghai-Tibet plateau during non-growing season, a static chamber method was used to sample gases of soil CO2, CH4 and N2O from alpine meadow on the plateau of Southern Qinghai province during snow cover period, and gas chromatography was used to analyze concentrations of these gases. The results showed that soil CO2 flux was 1.33 g·(m2·h)-1, soil CH4 flux was-0.19 mg·(m2·h)-1, and soil N2O flux was 0.21 mg·(m2·h)-1 when the snow depth was 9-10 cm on March 3 and 4 during the prevalence period of snow cover; soil CO2 flux was 4.70 g·(m2·h)-1, and soil N2O flux was 0.24 mg·(m2·h)-1, and soil CH4 flux was-1.23 mg·(m2·h)-1 when the snow depth was 8-9 cm on April 30 during the end period of snow cover. And soil CO2 and N2O fluxes were low or negative, soil CH4 flux was negative and its absolute value was low when the snow depth was less than 4 cm during snow cover period. In addition, soil CO2 or N2O flux was positively correlated with the snow depth, and soil CH4 flux was negatively correlated with the snow depth (P < 0.05). Additionally, soil CO2 or N2O flux was negatively correlated with CH4 fluxes, and soil CO2 was positively correlated with soil N2O flux. In addition, soil CO2 flux was the highest during the growing season, followed by the end period of snow cover, and it was the lowest during the prevalence period of snow cover; soil N2O flux was high during the growing season, followed by the end period of snow cover, and it was the lowest during the prevalence period of snow cover; soil CH4 flux was negative, and its absolute value was higher during the growing season than other seasons, and it was the lowest during the prevalence period of snow cover. The results suggested that the change in snow cover would influence the fluxes of soil greenhouse gases from alpine meadow on the Qinghai-Tibet plateau.
Key words: snow cover      soil greenhouse gases      flux      climate change      alpine meadow      Qinghai-Tibet Plateau     

准确确定土壤CO2、CH4和N2O通量及其影响因素,是科学认识气候变化对陆地生态系统温室气体源/汇功能影响的关键.在高海拔地区,生态系统温室气体通量季节差异明显,生长季生物活动强烈,被认为温室气体排放的主要时段,非生长季生物活动较弱,被认为是温室气体排放弱及忽略的时段[1].然而,在中高纬度和高海拔地区却观测到积雪覆盖下土壤CO2排放量占全年15%~50%[2]、占夏季碳积累量的25%~90%[3],并且积雪减少后土壤冻结使生长季土壤碳分解速率降低[4]、减少约占全年的63%[5],使生长季积累的碳在非生长季被排放.同时,在非生长季节也观测到积雪覆盖土壤中CH4和N2O通量明显[6].其原因,目前认为与积雪覆盖土壤中水热要素、微生物属性和有机质分解有关[7].事实上,南北半球高海拔区域在非生长季有大片土地被积雪所覆盖,一些区域无雪期仅有2~3个月,低纬度积雪期虽短但却能融化和再生多次,仅北半球就约有40%生态系统受积雪影响[8],这些积雪的分布、厚度和持续期影响着土壤温湿度、冻融、有机质分解和微生物活性[7],成为非生长季影响土壤温室气体排放的重要因素.气候变化将使高海拔和中高纬度地区非生长季缩短、永久性和不稳定积雪厚度、融雪期和冻融改变,进而将使陆地生态系统温室气体源/汇功能改变[9].因此,在分析高海拔地区生态系统温室气体排放对气候变化响应中,非生长季土壤温室气体通量及其对积雪变化响应无疑是不容忽视的重要内容.

在国际上,对积雪变化下高海拔地区森林、草地和湿地土壤温室气体通量及其与积雪变化关系测定分析广泛展开[6, 10, 11],这些研究还集中在高纬度地区,对其它地区的观测分析还不充分.在我国,对森林、草地[12~14]、农田和湿地土壤温室气体通量及其环境关系也开展了许多观测分析[15],但还主要集中在生长季温室气体通量测定,对积雪期土壤温室气体通量观测研究还不多[16].

青藏高原是积雪分布集中区域,高寒草甸是广泛分布的生态系统.在这些地区,积雪是影响高寒草甸生态系统功能的重要因素.虽然对高寒草甸土壤温室气体通量已有过研究报道[17, 18],但就积雪及非生长季土壤温室气体通量的观测研究还不多.为此,本研究选择青海南部高原的高寒草甸,测定分析积雪集中期、积雪末期和生长季土壤CO2、CH4和N2O通量特征,以期为进一步认识高海拔地区非生长季土壤温室气体的排放规律提供一定的依据.

1 材料与方法 1.1 研究区概况

2011年在青海省玉树的巴塘草原附近,选择典型的高寒草甸(嵩草属等为优势种)生态系统为研究对象,在地势平坦的地段设立研究区(32°50.638′N, 97°03.844′E).研究区海拔在3 900~4 200 m,大气压为63.22 kPa,平均气温约2℃,年降水量约407.1 mm, 最大风速20.1 m·s-1; 积雪期一般有3~5个月,主要集中在2~5月初.植被主要由高山嵩草(Kobresia pygmaea)、玉树嵩草(Kobresia yushuensis)、高山早熟禾(Poa alpine)、黄花棘豆(Oxytropis ochrocephala)、甘肃马先蒿(Pedicularis kansuensis)和垂穗鹅冠草(Roegneria nutans)等组成.土壤为高寒草甸土,土层厚度在40~60 cm,土壤有机碳含量在20~60g·kg-1、全氮含量在2~5 g·kg-1.

1.2 积雪与其它环境因子观测

在2011年12月,建立雪栅栏(高1.5 m,长20 m),在雪墙背风向设立5个梯度,即离墙0、5、10、15和20 m处布设样方(大小为2 m×2 m),在观测样地内布设仪器,进行积雪和水热要素观测,地表温度、薄雪下温度用地温计测定、箱内温度用气温计测定、厚的积雪下温度用TM222型便携式数字温度计测定.利用Dynamet自动气象站监测气候要素,包括气温、降水、风速等; 用测雪尺对积雪深度进行测定,积雪深度达5 cm以上时,用手提称雪器对积雪密度或雪压进行监测(5 cm间隔),用Snow Fork积雪分析仪测定积雪的密度和液态水含量.

1.3 土壤温室气体采集和分析

根据气候数据记录,观测地在3月为积雪集中期(降雪日数多、积雪期长、积雪稳定、融化慢),在4月底为积雪末期(降雪日数少、积雪期短、融化快),5~9月为生长季.为了比较积雪期和生长季土壤温室气体通量的差异,在2012年积雪集中期的3月、积雪减少期的4月和生长季的7月进行土壤温室气体采集分析.为了比较积雪集中期和积雪末期不同积雪深度下土壤温室气体通量的差异,在雪墙背侧按照厚(积雪深度7 cm以上)、中等厚(积雪深度4~6 cm)、薄(积雪深度4 cm以下)、无积雪类型选择测定样方,由于积雪深度空间分布不均匀,在积雪集中期,积雪深度厚选择3个样方、积雪深度中等厚选择6个样方,其它积雪深度下和无积雪各选择4个样方; 在积雪末期,无积雪选择4个样方,其它各选择3个样方.在积雪期,在阴面和半阴面积雪稳定,辐射强度相对弱,所以只在阴面和半阴面选择样方取样.在生长季,由于太阳辐射强、气温高,使采样箱上使箱内气温升高幅度大,所以在阴面和阳面各选择4个样方.

积雪集中期的3月3日上午降大雪,17:00~19:30时在选择的样方内采集气体; 3月4日在09:00~19:40时在选择的样方内采集气体.积雪末期的4月30日在10:00时前降小雪,在10:50~18:00时在选择样方内采集气体.在生长季的7月27日,由于中午到下午17:00时太阳辐射强,所以选择在08:50~10:00时在选择样方内采样.为了减少不同积雪深度下采样时间差异对温室气体通量造成的影响,在不同积雪深度样方内保持同步采样.

采集气体以静态箱方法,采集箱以不透光的有机玻璃做成(长×宽×高为40 cm×40 cm×40 cm,壁厚2 mm, 装有把气体混匀的风扇、及采样的采气口).采集气样时,为了减少对积雪的破坏,把采集箱基座插进雪被到地面,与地面接触四周用土密封,以防止漏气.在安装好采集箱后的0、15、30、45和60 min用70 mL注射器在采集箱安装有三通阀的采气口进行气体采集,采集后立即注入大连化工厂生产的气体采样袋(100 mL).采集完第二天把样品从青海玉树经西宁空运到北京,送回北京林业大学公共分析测试中心实验室以安捷伦气相色谱仪(Agilent 7890A)在24 h内完成测定分析,具体方法见文献[13, 19].

1.4 通量计算和分析

气体通量表示单位面积单位时间观测箱内该气体质量的变化,一般正值表示气体从土壤排放到大气,负值表示气体从大气流向土壤或土壤消耗吸收大气中该气体.利用以下公式计算不同温室气体通量,具体见文献[19]:

式中,F为温室气体排放通量,Mr为相对分子质量(其中CO2为44.01,N2O为44.01,CH4为16.04),p为箱内气压,R为理想气体常数[8.31 J·(K·mol)-1],T为箱内温度(箱内气温加上273.15K),22.41为标准气体的体积, h为采集箱的高度, 为气体浓度变化率.

利用IBM SPSS Statistics 21软件,以LSD检验方法检验不同积雪深度下各土壤温室气体通量差异,以线性相关和回归分析方法分析温室气体排放通量与积雪深度的关系.

2 结果与分析 2.1 积雪集中期土壤温室气体排放通量

在积雪集中期的3月3日和3月4日,气温、地表温度、雪下温度、采集箱内温度差异较大,其中气温变化剧烈、深的积雪深度温度较高,并随时间变化(表 1).

表 1 在积雪集中期观测日的气温和积雪下温度及积雪密度 Table 1 Air temperature and temperature under snow cover and snow density during the prevalence period ofsnow cover

不同积雪深度下,土壤CO2、CH4和N2O通量不同(P < 0.05)(表 2).积雪深度为0 cm,土壤CO2和N2O通量为负,土壤CH4通量较低; 积雪深度为2~3 cm时,土壤CO2通量仍为负值,土壤CH4通量和N2O通量较低; 积雪深度为4~6 cm时,土壤CO2通量为正值但较低,土壤CH4通量为负值,土壤N2O通量较低; 积雪深度为9 cm以上时,土壤CO2和N2O通量较高,土壤CH4通量为负值.总体上,积雪深度在9 cm以上时,土壤CO2和N2O通量相对较高,CH4通量为吸收态(表 2).

表 2 积雪集中期不同积雪深度下土壤温室气体通量1) Table 2 Fluxes of soil greenhouse gases under different snow depth during the prevalence period of snow cover

土壤CO2、CH4和N2O通量与积雪深度变化相关性不同(图 1).土壤CO2通量与积雪深度呈正相关性(r=0.57,P < 0.05),土壤N2O通量与积雪深度也呈正相关性(r=0.70,P < 0.05),土壤CH4通量与积雪深度呈负相关性(r=-0.68,P < 0.05).

图 1 积雪集中期土壤CO2、CH4和N2O通量与积雪深度的关系 Fig. 1 Relationship between soil CO2, CH4 or N2O flux and snow depth during the prevalence period of snow cover

3种土壤温室气体排放通量存在一定相关性,土壤CO2通量与CH4通量呈负相关(r=0.12, P > 0.05),土壤CO2通量与N2O通量呈现正相关(r=-0.24, P > 0.05);土壤CH4通量与N2O通量呈负相关性(r=-0.96, P < 0.01).

2.2 积雪末期土壤温室气体的通量

积雪末期的4月30日,气温、地表土壤温度、积雪表面温度差异较大(表 3).气温变化剧烈,在积雪深度为9 cm时,雪下温度较高(表 3).积雪密度比积雪盛期小(表 1表 3).

表 3 4月30日气温和积雪下温度及积雪密度 Table 3 Air temperature and temperature under snow cover and snow density on April 30

在积雪末期的4月30日,不同深度积雪下土壤CO2、CH4和N2O通量差异较大(P < 0.05)(表 4).积雪深度为0 cm时,3种温室气体通量都为负值; 积雪深度为2~3 cm时,土壤CO2和N2O通量为正且较低,土壤CH4为吸收态; 积雪深度为4~5 cm时,土壤CO2通量仍较低,土壤CH4为吸收态,土壤N2O通量也较低; 积雪深度为6~7 cm以上时,土壤CO2通量相对较高,土壤CH4通量为吸收态,土壤N2O通量较低; 积雪深度在8~9 cm时,土壤CO2和N2O通量相对较高、CH4为吸收态(表 4).总体上,积雪深度为8~9 cm时,土壤CO2和N2O通量较高,土壤CH4为吸收态且其绝对值较大.

表 4 4月30日不同积雪深度下土壤温室气体排放通量1) Table 4 Fluxes of soil greenhouse gases under different snow depth on April 30

土壤CO2、CH4和N2O通量与积雪深度呈现不同的关系(图 2).土壤CO2通量与积雪深度呈正相关(r=0.96, P < 0.001), 土壤CH4通量与积雪深度呈负相关性(r=-0.81, P < 0.05),土壤N2O通量与积雪深度呈正相关性(r=-0.95, P < 0.001).

图 2 积雪末期土壤CO2、CH4和N2O通量与积雪深度的关系 Fig. 2 Relationship between soil CO2, CH4 and N2O flux and snow depth at the end period of snow cover

土壤CO2与CH4通量呈负相关性(r=-0.33,P > 0.05),土壤CO2与N2O通量呈现正相关(r=0.67,P < 0.05);土壤CH4与N2O通量呈现负相关(r=-0.10,P > 0.05).

2.3 生长季土壤温室气体的通量

在生长季,气温、地表土壤温度、箱内温度差异较大,并且气温、地表温度和箱体内温度都呈随着时间变化的趋势(表 5).

表 5 7月27日生长季温度状况/℃ Table 5 Temperature condition on July 27/℃

在生长季的7月27日,土壤CO2通量较高,土壤CH4为吸收态,土壤N2O通量较低,在阳面比阴面要高(表 6).

表 6 生长季土壤温室气体通量 Table 6 Fluxes of soil greenhouse gases in growing season

在积雪集中期、积雪末期和生长季,土壤CO2、CH4和N2O通量差异较大,土壤CO2和N2O通量在生长季较高、积雪末期其次、积雪集中期较低; 土壤CH4为吸收态,其绝对值在生长季和积雪末期较大、积雪集中期较小(表 7).

表 7 生长季和积雪期土壤温室气体通量比较1) Table 7 Comparison of fluxes of soil greenhouse gases in growing season and snow cover period

3 讨论

本研究表明,在积雪期高寒草甸土壤温室气体排放通量明显.这与在高海拔和高纬度地区观测到的积雪覆盖下土壤温室气体通量结果总体一致.如1994~1997年在加拿大魁北克东南农田和森林中测定发现,冬季积雪下土壤N2O和CO2排放通量较高,其中农田土壤N2O通量比森林土壤中高、而土壤CO2通量差异不大,冬季农田土壤中N2O是生长季的2~4倍[20]; 1993~1994年在美国科罗拉多州Niwot Ridge进行的积雪试验表明,积雪覆盖土壤CO2和N2O通量与土壤冻结程度和积雪期有关,积雪期延长使土壤CO2和N2O通量增加[10]; Fahnestock等[21]1996年在美国阿拉斯加北测定北极苔原雪盖下土壤CO2浓度发现,积雪覆盖下土壤中CO2浓度比大气中要高,积雪较深的河岸土壤CO2通量最高,积雪较薄的草地土壤中最低[21]; Welker等[2]观测北极湿草和干苔原中温室气体排放发现,冬季积雪深度增加使苔原土壤CO2通量增加[2].但Decker等[7]在芬兰东部进行积雪对土壤N2O、CO2和CH4通量影响研究发现,冷季扫除积雪后土壤CO2和CH4通量变化不大,土壤冻融促进N2O排放,原因是冬季土壤N2O和CO2气体在土壤中积累,春季土壤解冻后释放,冬季土壤中CH4浓度较低、解冻后升高.

积雪下土壤温室气体通量与土壤微生物活动和养分及冻融影响等有关. 1993~1994年在美国科罗拉多Niwot Ridge进行的积雪试验表明,积雪深度增加产生保温效果使土壤微生物活动得以持续[10]; 在加拿大北极低苔原增雪试验表明,冬季较深积雪的保温效果使土壤微生物活性提高、有机物分解加速,并使土壤可溶性碳对微生物生长和活性限制加剧,可溶性氮积累增加,真菌和细菌生长加快,冬末积雪加深使土壤中微生物氮含量增加,但使溶解有机氮和氮库及细菌数量降低,真菌质量和菌丝长度却没有变化,但使可溶性碳对土壤微生物生长的限制加剧,磷素对微生物呼吸限制降低,真菌质量和菌丝长度响应养分变化比细菌质量或丰富度响应程度高,积雪深度增加使晚冬土壤微生物的营养库增加、微生物群落生理功能改变[21].在冬季,土壤微生物群落适应了低温条件[23],并获得前秋季植物凋落物和根系死亡供应的碳[24, 25].在冬季,深而持续积雪覆盖土壤中微生物活性较高[26, 27],薄而间断性积雪覆盖土壤中微生物活性较低[28, 29].在春季土壤冻融期,土壤N2O通量最大,土壤中铵浓度高促进硝化作用,相对高温促进土壤中反硝化作用[30, 31].薄雪下土壤频繁冻融使土壤CO2通量增加[32, 33],使土壤中N2O脉冲排放[34].积雪深度减少对土壤有机质分解和呼吸可能产生影响,但对凋落物分解的影响却不大[35].

土壤N2O、CO2和CH4通量随积雪深度不同而变化[10, 36].本研究表明,土壤CO2和N2O通量与积雪深度呈正相关、土壤CH4通量与积雪深度呈负相关性; 当积雪深度超过9cm时,土壤CO2和N2O通量较高,土壤CH4通量为吸收态.积雪持续期和积雪密度都可能影响土壤温室气体通量[1~4, 6].积雪作为临时保温层足以使冬季土壤温度保持相对较高.不过,积雪深度超过5cm,积雪才具有明显保温功能,反之,却起降温作用[8, 16].另外,积雪末期气温比积雪集中期要高,土壤冻结程度较弱,积雪密度变小(表 1表 3),也使积雪末期的温室气体通量比积雪集中期要高.连续积雪覆盖使土壤保持相对高的温度,并使土壤冻融频率降低[7].土壤低温和冻融影响具有生物有效性的液态水含量与时间[29], 进而影响土壤碳和氮循环过程[37].在冬季薄而间断的积雪覆盖使土壤温度、有效液态水和微生物活性较低,使植物根系死亡率和土壤氮浸出率较高[29, 35, 38].深且持续积雪覆盖使土壤中温度、有效液态水和微生物活性较高,但土壤中氮浸出率较低[37].在美国新罕布什尔州哈伯德布鲁克的试验林发现,土壤N2O通量在积雪期的11月和融雪期的3~4月为负,土壤CO2通量在1月为负值[39].本研究发现,积雪深度小于4cm时,土壤CO2和N2O通量较低或为负值.这可能因为用注射器抽取采样箱中气体,减少采样箱内气体量,低温下土壤中CO2和N2O气体产生少不能补充采样箱内减少气体,致使采样箱气体浓度变化为负值.另外,低温下雪盖和土壤中所结冰粒也可能对土壤N2O和CO2气体产生陷阱效应[40],也致使采样箱内气体浓度变化为负值.

积雪深度改变后土壤CO2、CH4和N2O通量变化不同.如Filippa等[36]在美国科罗拉多州Niwot岭发现,春季积雪融化使土壤N2O排放达到高峰,然后下降,土壤CO2通量却无此趋势; Groffman等[39]在美国新罕布什尔州哈伯德布鲁克阔叶林发现,积雪深度减薄使土壤冻结,土壤CO2和CH4通量季节变化明显,土壤N2O通量却无明显季节变化,冬季土壤N2O通量增加、CH4吸收减少; Merbold等[41]在瑞士亚高山草地观测发现,积雪覆盖下土壤CO2、CH4通量随冬季延长而下降,但土壤N2O通量却无此变化.土壤CO2、CH4和N2O通量对积雪变化响应差异与不同气体产生和消耗过程、参与代谢的微生物区系和酶等都有关.土壤CO2通量主要受土壤有机质分解过程、土壤微生物矿化及植物根系呼吸影响. Monson等[28]在Rocky山亚高山森林中发现,土壤CO2通量最大增幅出现在冬末融雪和雪密度增加期,积雪融化下土壤CO2增加约6倍,这些变化主要由融雪水中微生物对土壤温度升高的响应引起; Aanderud等[42]在温带落叶林研究发现,积雪和除雪下土壤CO2通量对湿度变化敏感度增加,积雪深度增加且温度在0℃以上,土壤CO2通量对温度变化敏感,积雪变化伴随土壤CO2通量变化,土壤真菌和细菌群落结构改变; Ohkubo等[43]在日本北部发现,积雪达30cm以上,土壤CO2浓度保持稳定,CO2通量与积雪深度或土壤冻结深度关系不显著,因为CO2排放低; 积雪变薄使土壤冻结深度增加、有效碳供应减少、土壤CO2通量减少[44].土壤N2O主要产生于土壤硝化和反硝化过程[45],这些过程受土壤理化性质(有机质含量、pH、容重、质地等),以及土壤温度、湿度、O2及碳氮底物供应能力、植物生长等影响[45]. Yanai等[46]在日本北部观测发现,冬春转换期土壤N2O排放与最大土壤冻结深度相关,当土壤冻结深度大于0.15 m,土壤N2O受影响较大,没达最大冻结深度,融雪对土壤N2O影响不明显; Morse等[47]在美国新罕布什尔州哈伯德布鲁克长期生态研究站测定北方阔叶林土壤发现,土壤反硝化过程损失氮超过全年大气氮沉降量的一半,反硝化过程受海拔和季节的影响,高海拔和融雪过程中土壤氮反硝化速率较高,这些过程受融雪期土壤湿度影响较大; Schimel等[48]在北极干石楠和湿润垫状冻原观测发现,秋和冬季积雪覆盖的垫状植被冻原土壤净N矿化率较高,解冻期固持作用其次,自然积雪覆盖下土壤氮素矿化只在秋季明显,冬季积雪覆盖增加土壤氮素净矿化和硝化过程明显; 冬末雪盖加深,干石楠土壤净氮矿化率增加,薄的积雪下土壤温度低限制土壤氮素矿化; Jusselme等[49]在法国阿尔卑斯山亚高山草原发现,尽管土壤冻结,但冬季与氮代谢相关土壤微生物活动发生变化,其中嗜冷微生物群落变化明显,冬季积雪减薄或无积雪下土壤中硝化和反硝化细菌数量较高,积雪深度改变促进土壤中营养物质释放,增加了嗜冷细菌丰度和活性,冬季较厚和持续积雪使土壤温度在0℃以上,限制了土壤微生物的氮素营养.土壤CH4通量与土壤氧化大气CH4过程有关,且受该气体生产和消费过程、扩散影响因素和氮循环的影响,这种气体主要由甲烷专性氧化酶催化完成[50],受到许多因素影响[6, 8].土壤CH4通量受积雪变化影响主要发生在积雪融化期,且与土壤氮循环过程相关[39].减少积雪覆盖使温带森林土壤CH4吸收率增加,但并未使土壤冻结或氮循环加速,增强大气到土壤中CH4扩散和氧化活性,这可能影响土壤CH4通量[39, 51]. Merbold等[41]在瑞士亚高山草地观测认为,影响土壤CO2、CH4通量的主要为土壤表面温度和雪水平衡,但N2O通量却难以用土壤和积雪因素解释.

土壤CO2、CH4和N2O都与土壤有机质分解和微生物活动及环境条件影响有关,不同温室气体通量间存在相关[52].土壤CO2涉及生物和非生物因素,受土壤有机质稳定性和C、N有效性的影响; 土壤CH4通量受土壤中碳和氮相互作用影响,需要厌氧条件、相对低的氧化还原电位、底物等, 甲烷氧化菌受主要底物和有效N的影响; 硝化和反硝化作用是土壤中N2O生成的两个最主要微生物过程, 土壤N2O厌氧脱氮过程主要是由有效碳源驱动,需要厌氧条件和NO3--N作为底物,N2O是硝化过程中间产物,需要有氧条件和NH4+-N为底物,土壤水分状况、温度、NH4+-N和NO3--N含量、有机质、pH等都影响土壤N2O通量.这些不同温室气体通量都受土壤碳氮相互作用的影响[53]. Sitaula等[54]发现云杉林土壤N2O释放速率与硝化速率呈正相关,与pH值呈负相关,土壤CH4吸收率与硝化速率呈负相关.本研究表明,积雪覆盖下土壤CO2与CH4通量及CH4与N2O通量间为负相关性、土壤CO2与N2O通量为正相关性,反映了土壤中CO2与N2O及CH4过程联系[52].

积雪期不但影响非生长季节的温室气体排放,也影响生长季土壤温室气体通量. Blankinship等[55]总结了全球积雪试验结果发现,积雪深度减少处理使夏季土壤CO2通量减少了35%,土壤N2O通量却增加了3倍.本研究表明,土壤CO2通量在生长季较高、积雪末期其次、积雪集中期较低; 土壤N2O通量在生长季较高、积雪末期其次,积雪集中期较低; 土壤CH4为吸收态,其绝对值在生长季和积雪末期较大、积雪集中期较小(表 7).这与生长季和积雪期的环境条件差异有一定关系(表 1表 3表 5).意味着尽管生长季土壤温室气体排放通量较高,但积雪期土壤中温室气体排放过程也是不容忽视的过程[8].

需要强调的是,生长季植物通过光合作用积累碳,但在积雪期却只有分解过程,所以在分析生态系统碳汇功能方面需要考虑非生长季的过程[56].另外,随着气候变化,青藏高原的积雪期和厚度、及生长季的长短都将可能改变,这将使土壤CO2、CH4和N2O通量改变,进而将影响到高寒草甸温室气体源/汇的功能.意味着在分析高寒草甸温室气体源/汇功能特征中,积雪变化的影响是一个不容忽视的重要因素.

需要指出的是,本研究只是进行了积雪变化下土壤温室气体排放的初步分析,许多机制需要进一步研究.另外,本研究进行的积雪覆盖土壤温室气体通量的观测分析还可能存在一些误差,包括阳光照射引起采样箱温度升高、及土壤性质局部的差异、采集和分析气体过程的误差等,这需要在以后研究中改进完善.尽管如此,本研究初步明确了积雪变化对高寒草甸土壤温室气体通量影响的一些特征,能为相关研究提供一定的参考.

4 结论

(1) 积雪深度超过5 cm,积雪变化对高寒草甸土壤CO2、CH4和N2O通量影响明显.在积雪集中期和积雪减少期,积雪深度在9~10 cm时,土壤CO2和N2O通量较高、CH4通量为吸收态; 在积雪深度小于4 cm时,土壤CO2和N2O通量较低或为负值,土壤CH4通量为吸收态、其绝对值较小.

(2) 在积雪期,高寒草甸土壤CO2和N2O通量与积雪深度呈正相关性、土壤CH4通量与积雪深度呈负相关性(P < 0.05).另外,土壤CO2与CH4通量及CH4与N2O通量间呈负相关,土壤CO2与N2O通量呈正相关.

(3) 高寒草甸积雪期土壤CO2、CH4和N2O排放通量不容忽视.高寒草甸土壤CO2和N2O通量在生长季较高、在积雪末期其次、在积雪集中期较低; 土壤CH4通量为吸收态,绝对值在生长季和积雪末期较大、在积雪盛期较小.

(4) 未来气候变化引发积雪变化将对高寒草甸土壤CO2、CH4和N2O通量产生一定的影响.

参考文献
[1] Pumpanen J, Ilvesniemi H, Perämäki M, et al. Seasonal patterns of soil CO2 efflux and soil air CO2 concentration in a scots pine forest: comparison of two chamber techniques[J]. Global Change Biology,2003,9 (3) : 371–382 .
[2] Welker J M, Fahnestock J T, Jones M H. Annual CO2 flux in dry and moist Arctic tundra: field responses to increases in summer temperatures and winter snow depth[J]. Climatic Change,2000,44 (1-2) : 139–150 .
[3] Monson R K, Lipson D L, Burns S P, et al. Winter forest soil respiration controlled by climate and microbial community composition[J]. Nature,2006,439 (7077) : 711–714 .
[4] ÖquistM G, LaudonH. Winter soil frost conditions in boreal forests control growing season soil CO2 concentration and its atmospheric exchange[J]. Global Change Biology,2008,14 (12) : 2839–2847.
[5] Muhr J, Borken W, Matzner E. Effects of soil frost on soil respiration and its radiocarbon signature in a Norway spruce forest soil[J]. Global Change Biology,2009,15 (4) : 782–793 .
[6] Maljanen M, Kohonen A R, Virkajärvi P, et al. Fluxes and production of N2O, CO2 and CH4 in boreal agricultural soil during winter as affected by snow cover[J]. Tellus B,2007,59 (5) : 853–859 .
[7] Decker K L M, Wang D, Waitea C, et al. Snow removal and ambient air temperature effects on forest soil temperatures in northern Vermont[J]. Soil Science Society of America Journal,2003,67 (4) : 1234–1242 .
[8] Jones H G, Pomeroy J W, Walker D A, et al. Snow ecology, an interdisciplinary examination of snow-covered ecosystems[M]. Cambridge, United Kingdom, New York, USA: Cambridge University Press, 2001 .
[9] IPCC. Summary for policymakers[A]. In: Field C B, Barros V R, Dokken D J, et al (Eds.). Climate Change 2014: Impacts, Adaptation, and Vulnerability.. Contribution of Working GroupⅡto the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge. United Kingdom, New York, USA: Cambridge University Press, 2014.
[10] Brooks P D, Schmidt S K, Williams M W. Winter production of CO2 and N2O from alpine tundra: environmental controls and relationship to inter-system C and N fluxes[J]. Oecologia,1997,110 (3) : 403–413 .
[11] Sommerfeld R A, Mosier A R, Musselman R C. CO2, CH4 and N2O flux through a Wyoming snowpack and implications for global budgets[J]. Nature,1993,361 (6408) : 140–142 .
[12] 董云社, 章申, 齐玉春, 等. 内蒙古典型草地CO2, N2O, CH4通量的同时观测及其日变化[J]. 科学通报,2000,45 (3) : 318–322.
[13] 王跃思, 纪宝明, 黄耀, 等. 农垦与放牧对内蒙古草原N2O、CO2排放和CH4吸收的影响[J]. 环境科学,2001,22 (6) : 7–13.
[14] 牟长城, 程伟, 孙晓新, 等. 小兴安岭落叶松沼泽林土壤CO2, N2O和CH4的排放规律[J]. 林业科学,2010,46 (7) : 7–15.
[15] 李平, 郎漫, 徐向华, 等. 不同开垦年限黑土温室气体排放规律研究[J]. 环境科学,2014,35 (11) : 4321–4328.
[16] 赵亮, 徐世晓, 伏玉玲, 等. 积雪对藏北高寒草甸CO2和水汽通量的影响[J]. 草地学报,2005,13 (3) : 242–247.
[17] 金会军, 程国栋, 徐柏青, 等. 青藏高原花石峡冻土站高寒湿地CH4排放研究[J]. 冰川冻土,1998,20 (2) : 172–174.
[18] 赵拥华, 赵林, 武天云, 等. 冬春季青藏高原北麓河多年冻土活动层中气体CO2浓度分布特征[J]. 冰川冻土,2006,28 (2) : 183–190.
[19] 王明星. 大气化学[M]. 北京: 气象出版社, 1999 : 40 -42.
[20] van Bochove E, Jones H G, Bertrand N, et al. Winter fluxes of greenhouse gases from snow-covered agricultural soil: intra-annual and interannual variations[J]. Global Biogeochemical Cycles,2000,14 (1) : 113–125 .
[21] Fahnestock J T, Jones M H, Brooks P D, et al. Winter and early spring CO2 efflux from tundra communities of northern Alaska[J]. Journal of Geophysical Research: Atmospheres,1998,103 (D22) : 29023–29027 .
[22] Buckeridge K M, Grogan P. Deepened snow alters soil microbial nutrient limitations in arctic birch hummock tundra[J]. Applied Soil Ecology,2008,39 (2) : 210–222 .
[23] Lipson D A, Monson R K, Schmidt S K, et al. The trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high elevation coniferous forest[J]. Biogeochemistry,2009,95 (1) : 23–35 .
[24] Scott-Denton L E, Rosenstiel T N, Monson R K. Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration[J]. Global Change Biology,2006,12 (2) : 205–216 .
[25] Nowinski N S, Taneva L, Trumbore S E, et al. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment[J]. Oecologia,2010,163 (3) : 785–792 .
[26] Mariko S, Bekku Y, Koizumi H. Efflux of carbon dioxide from snow-covered forest floors[J]. Ecological Research,1994,9 (3) : 343–350 .
[27] Elberling B. Annual soil CO2 effluxes in the High Arctic: the role of snow thickness and vegetation type[J]. Soil Biology and Biochemistry,2007,39 (2) : 646–654 .
[28] Monson R K, Burns S P, Williams M W, et al. The contribution of beneath-snow soil respiration to total ecosystem respiration in a high-elevation, subalpine forest[J]. Global Biogeochemical Cycles,2006,20 (3) : GB3030.
[29] ÖquistM G, SparrmanT, KlemedtssonL, 等. Water availability controls microbial temperature responses in frozen soil CO2 production[J]. Global Change Biology,2009,15 (11) : 2715–2722.
[30] Grogan P, Michelsen A, Ambus P, et al. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-Arctic heath tundra mesocosms[J]. Soil Biology and Biochemistry,2004,36 (4) : 641–654 .
[31] Koponen H T, Martikainen P J. Soil water content and freezing temperature affect freeze-thaw related N2O production in organic soil[J]. Nutrient Cycling in Agroecosystems,2004,69 (3) : 213–219 .
[32] Elberling B, Brandt K K. Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of Arctic C cycling[J]. Soil Biology and Biochemistry,2003,35 (2) : 263–272 .
[33] Hirano T. Seasonal and diurnal variations in topsoil and subsoil respiration under snowpack in a temperate deciduous forest[J]. Global Biogeochemical Cycles,2005,19 (2) : GB2011.
[34] Müller C, Kammann C, Ottow J C G, et al. Nitrous oxide emission from frozen grassland soil and during thawing periods[J]. Journal of Plant Nutrition and Soil Science,2003,166 (1) : 46–53 .
[35] Bokhorst S, Metcalfe D B, Wardle D A. Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent[J]. Soil Biology and Biochemistry,2013,62 : 157–164 .
[36] Filippa G, Freppaz M, Williams M W, et al. Winter and summer nitrous oxide and nitrogen oxides fluxes from a seasonally snow-covered subalpine meadow at Niwot Ridge, Colorado[J]. Biogeochemistry,2009,95 (1) : 131–149 .
[37] Brooks P D, Grogan P, Templer P H, et al. Carbon and nitrogen cycling in snow-covered environments[J]. Geography Compass,2011,5 (9) : 682–699 .
[38] Hardy J P, Groffman P M, Fitzhugh R D, et al. Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest[J]. Biogeochemistry,2001,56 (2) : 151–174 .
[39] Groffman P M, Hardy J P, Driscoll C T, et al. Snow depth, soil freezing, and fluxes of carbon dioxide, nitrous oxide and methane in a northern hardwood forest[J]. Global Change Biology,2006,12 (9) : 1748–1760 .
[40] Goodroad L L, Keeney D R. Nitrous oxide emissions from soils during thawing[J]. Canadian Journal of Soil Science,1984,64 (2) : 187–194 .
[41] Merbold L, Steinlin C, Hagedorn F. Winter greenhouse gas fluxes (CO2, CH4 and N2O) from a subalpine grassland[J]. Biogeosciences,2013,10 (5) : 3185–3203 .
[42] Aanderud Z T, Jones S E, Schoolmaster Jr D R. Sensitivity of soil respiration and microbial communities to altered snowfall[J]. Soil Biology and Biochemistry,2013,57 : 217–227 .
[43] Ohkubo S, Iwata Y, Hirota T. Influence of snow-cover and soil-frost variations on continuously monitored CO2 flux from agricultural land[J]. Agricultural and Forest Meteorology,2012,165 : 25–34 .
[44] Schindlbacher A, Jandl R, Schindlbacher S. Natural variations in snow cover do not affect the annual soil CO2 efflux from a mid-elevation temperate forest[J]. Global Change Biology,2014,20 (2) : 622–632 .
[45] Williams E J, Hutchinson G L, Fehsenfeld F C. NOx and N2O emissions from soil[J]. Global Biogeochemical Cycles,1992,6 (4) : 351–388 .
[46] Yanai Y, Hirota T, Iwata Y, et al. Accumulation of nitrous oxide and depletion of oxygen in seasonally frozen soils in northern Japan-Snow cover manipulation experiments[J]. Soil Biology and Biochemistry,2011,43 (9) : 1779–1786 .
[47] Morse J L, Durán J, Groffman P M. Soil denitrification fluxes in a northern hardwood forest: the importance of snowmelt and implications for ecosystem N budgets[J]. Ecosystems,2015,18 (3) : 520–532 .
[48] Schimel J P, Bilbrough C, Welker J M. Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities[J]. Soil Biology and Biochemistry,2004,36 (2) : 217–227 .
[49] Jusselme M D, Saccone P, Zinger L, et al. Variations in snow depth modify N-related soil microbial abundances and functioning during winter in subalpine grassland[J]. Soil Biology and Biochemistry,2016,92 : 27–37 .
[50] Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO)[J]. Microbiology and Molecular Biology Reviews,1996,60 (4) : 609–640 .
[51] Borken W, Davidson E A, Savage K, et al. Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil[J]. Soil Biology and Biochemistry,2006,38 (6) : 1388–1395 .
[52] 王艳芬, 马秀枝, 纪宝明, 等. 内蒙古草甸草原CH4和N2O排放通量的时间变异[J]. 植物生态学报,2003,27 (6) : 792–796.
[53] Gärdenäs A I, Ågren G I, Bird J A, et al. Knowledge gaps in soil carbon and nitrogen interactions-from molecular to global scale[J]. Soil Biology and Biochemistry,2011,43 (4) : 702–717 .
[54] Sitaula B K, Bakken L R. Nitrous oxide release from spruce forest soil: relationships with nitrification, methane uptake, temperature, moisture and fertilization[J]. Soil Biology and Biochemistry,1993,25 (10) : 1415–1421 .
[55] Blankinship J C, Hart S C. Consequences of manipulated snow cover on soil gaseous emission and N retention in the growing season: a meta-analysis[J]. Ecosphere,2012,3 (1) : 1–20 .
[56] 伍星, 刘慧峰, 张令能, 等. 雪被和土壤水分对典型半干旱草原土壤冻融过程中CO2和N2O排放的影响[J]. 生态学报,2014,34 (19) : 5484–5493.