环境科学  2016, Vol. 37 Issue (6): 2266-2270   PDF    
微丝菌(Microthrix parvicella)原位荧光杂交(FISH)定量过程的条件优化
王润芳1,2 , 张红1 , 王琴3 , 王娟1 , 顾剑2 , 齐嵘1 , 杨敏1     
1.中国科学院生态环境研究中心,北京 100085;
2.北京北排水环境发展有限公司水质检测中心,北京 100022;
3.河北大学化学与环境科学学院,保定 071002
摘要: 微丝菌(Microthrix parvicella)是世界范围内诱发活性污泥膨胀现象的主要丝状菌之一,它在活性污泥中准确的原位定量解析对污泥膨胀现象及控制策略研究具有非常重要的意义.由于微丝菌自身的特殊生理生化性质(如表面高疏水性及较厚细胞壁)易导致常规荧光原位杂交(FISH)过程中定量结果偏低.本研究针对FISH过程中存在的探针渗透率低、荧光信号偏弱等现象,从活性污泥样品前处理、杂交过程条件等方面对Microthrix parvicella的FISH定量过程进行了优化.结果表明,在前处理使用溶菌酶(浓度为36000 U·mL-1),探针浓度为4.5 ng·μL-1,杂交时间延长至4 h的条件下,Microthrix parvicella的FISH定量结果可从1.12%提高至96.70%,并与定量PCR(q-PCR)结果和Eikelboom & Jenkins法(镜检观察)定量结果更为趋近一致.
关键词: 污泥膨胀      微丝菌      FISH技术      优化      定量     
Optimization for Microthrix parvicella Quantitative Processing of Fluorescence in situ Hybridization (FISH)
WANG Run-fang1,2 , ZHANG Hong1 , WANG Qin3 , WANG Juan1 , GU Jian2 , QI Rong1 , YANG Min1     
1.Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,Beijing 100085,China;
2.Water Quality Testing Center,Beijing Drainage Water Environment Development Co.,Ltd.,Beijing 100022,China;
3.College of Chemistry and Environmental Science,Hebei University,Baoding 071002,China
Abstract: Precise quantification of Microthrix parvicella,which is identified as a dominated filamentous bacterium of bulking sludge in the worldwide,is essential for bulking investigation and related control strategies. However,quantitative processing based on fluorescence in situ hybridization (FISH) is prone to interference due to the specific characteristics of Microthrix parvicella (hydrophobic surface with thick cell wall). Our study focused on pretreatment and process optimization to show that the proportion of Microthrix parvicella was increased from 1.12% to 96.70% benefited by lysozyme (36000 U·mL-1),high probe concentration (4.5 ng·μL-1) and longer hybridization time (4 h) employed,mapping with the results of q-PCR method and Eikelboom & Jenkins Observation.
Key words: sludge bulking      Microthrix parvicella      fluorescence in situ hybridization(FISH)      optimization      quantitative     

在城市污水生物处理工艺的运行过程中,污泥膨胀造成的二沉池泥水分离困难现象,不仅会引起出水悬浮物浓度升高、 污染物处理效率下降,严重时甚至导致整体生物工艺的崩溃[1~3]. 有研究报道指出,90%以上的污泥膨胀是由丝状菌(filamentous bacteria)的过量繁殖引起的[4],而微丝菌(Microthrix parvicella)则是在世界范围内诱发城市污水处理厂污泥膨胀现象的主要丝状菌[5~10]. 为了更好地解决污泥膨胀对工艺正常运行的困扰,活性污泥中的优势丝状菌,特别是M.parvicella的准确定性定量分析在膨胀机制研究及控制中尤为重要.

针对M.parvicella的快速定性,目前多采用Eikelboom & Jenkins法进行显微镜镜检,从形态学角度进行快速鉴定[11],但定量分析结果较为粗略[12]. 定量PCR(q-PCR)尽管可以准确获得M. parvicella的数量变化[13],但结果无法分辨其在菌胶团中的生长位置对污泥沉降性的影响. 荧光原位杂交(FISH)技术同时结合上述两种方法的优点,既可比镜检法更为准确地定量M.parvicella的数目变化,同时又能以直接证据的形式表现出M.parvicella形态的变化趋势,成为膨胀机制研究中重要的解析方法之一. 但M.parvicella为革兰氏阳性菌,且细胞壁较厚,传统方法下的目标探针穿透效果较差,造成与胞内靶向DNA的结合效率下降,影响最终的荧光信号通量,引起定量结果的无规律波动[14, 15].

本研究根据M.parvicella的生理生化特点,在常规荧光原位杂交技术的基础上,通过样品前处理优化、 杂交过程参数优化等多种方式,系统提高FISH杂交效率,较为准确地获得其在活性污泥中的比例数据,以期为膨胀机制及控制研究奠定扎实的科学数据基础.

1 材料与方法 1.1 样品的采集及固定

样品采于某城市污水处理厂污泥膨胀期曝气池的活性污泥,经Eikelboom & Jenkins法镜检表明: 丝状菌丰度为5,优势丝状菌为M. parvicella(如图 1).

图 1 活性污泥中优势丝状菌 Fig. 1 Dominant filamentous bacteria in activated sludge

离心管取样2 mL,于12000 r ·min-1离心5 min,去上清,加入1 mL的冷冻乙醇,摇匀-20℃ 保存.

1.2 FISH定量过程

FISH操作步骤见文献[16]. 选用探针信息如表 1所示.

样品于荧光显微镜下观察(OLYMPUS BX51),阳性M.parvicella为红色(TRITC),活细菌为绿色(FITC),全细菌为蓝色(DAPI),每视野拍摄3组,共10个视野,采用Image J计数求平均.

由于M.parvicella本身的生理特性,造成探针渗透性差,荧光信号不强. 根据报道[18, 19],针对前处理方法(1 mol ·L-1 HCl、 变溶菌素、 溶菌酶)、 探针浓度(1.5、 3.0、 4.5 ng ·μL-1)和杂交时间[20~22](2、 3、 4 h)进行了系统优化研究.

1.3 Real time-PCR定量过程

普通PCR和q-PCR具体步骤参考文献[23~25]. 引物信息如表 2所示.

表 1 探针的选择 Table 1 Probes used in this study

表 2 引物的选择 Table 2 Primers used in this study

2 结果与分析 2.1 不同探针浓度下的定量结果对比

随着探针浓度的提高,探针与目标菌结合程度逐步提高,目标菌的荧光信号明显增强,如图 2所示,当探针浓度为4.5 ng ·μL-1时,M.parvicella占活菌的比例(MPAmix/EUB)从1.12%提高到12.36%.

图 2 不同探针浓度下M.parvicella的FISH图片 Fig. 2 FISH analysis of M.parvicella under different probe concentrations

2.2 不同杂交时间下的定量结果

在优化探针浓度为4.5 ng ·μL-1后,考察不同杂交时间(2、 3、 4 h)对定量结果的影响,结果如图 3所示. 杂交时间对荧光强度和M.parvicella形态有着明显的影响,随着杂交时间的延长,探针的渗透性增加,其与目标菌结合得越完全,目标菌荧光数量和荧光强度都显著增加,且表现出来的形态越完整. M.parvicella占活菌的比例从13.30%提高到33.30% (图 3).

图 3 不同杂交时间下M.parvicella的FISH图片 Fig. 3 FISH analysis of M.parvicella at different hybridization time

2.3 不同前处理条件下的定量结果研究

样品经脱水固定后,可以采取不同的方法进行前处理以提高探针的透过效率.酸处理可以使细胞壁蛋白质水解,降低对探针的干扰,增加探针穿透性; 变溶菌素则主要作用于连接N-乙酞胞壁酸和N-乙酞葡萄糖胺的β-1,4 糖昔键,使细胞壁得以裂解增加荧光强度[28]; 溶菌酶主要通过破坏细胞壁中的N-乙酰胞壁酸和N-乙酰氨基葡糖之间的β-1,4糖苷键,使细胞壁不溶性黏多糖分解成可溶性糖肽,从而提高荧光信号[29, 30]. 在采取不同的前处理方法后,如图 4所示,酸处理并未引起明显变化,而变溶菌素、 溶菌酶的使用则显著增强了荧光信号,且M.parvicella形态有较完整的表达. 溶菌酶前处理方法下M.parvicella形态更接相差下的观察状态,无断点且光滑. 因此,在不同前处理下条件下,M.parvicella的比例高低依次为溶菌酶>变溶菌酶>1 mol ·L-1 HCl.

图 4 不同前处理下M.parvicella的FISH图片 Fig. 4 FISH analysis of M.parvicella with different pretreatment methods

2.4 FISH 定量结果与q-PCR定量结果的比较

在确认优化的各项条件后,M.parvicella在活性污泥中定量结果的比例显著提高. 为了更为准确地检验优化条件的作用,将不同优化状态下的FISH定量结果与q-PCR定量结果进行了比较,结果如表 3表 4所示.

表 3 FISH定量数据 Table 3 Quantification of M.parvicella by FISH

表 4 q-PCR定量数据 Table 4 Quantification of M.parvicella by q-PCR

不难看出,q-PCR定量结果稳定在80%左右,而变溶菌素和溶菌酶的优化结果可以分别达到91% 和96%. 由于方法原理不同,FISH定量与q-PCR定量结果的绝对值之间并不存在数学比较意义. 但从污泥膨胀研究的角度出发,特别是考虑到对象的客观比例,相差观察定量、 FISH定量及q-PCR定量三者之间的比例数值应大致符合一定范围,从更多的角度为M.parvicella客观比例数值提供较为匹配的横向比较,为今后的研究提供更为准确的科学数据基础.

3 结论

(1)本研究针对因M.parvicella本身生理特性导致荧光信号差,FISH定量结果偏低的实验现象,通过探针浓度、 杂交时间及前处理方法等优化,显著提高了定量结果的准确性. 探针浓度为4.5 ng ·μL-1,杂交时间为4 h,采用溶菌酶作为前处理得到的最终荧光信号更为完整与稳定地显示了M.parvicella在活性污泥中的原位形态.

(2)优化后的FISH方法通过10组(M.parvicella/EUB)平均计算结果M.parvicella占活菌比例稳定在96%,q-PCR结果稳定在80%. 尽管这两种方法由于原理不一,无法进行直接数值比较,但考虑到客观一致性,优化后杂交方法对种群的定量优势描述更与其他定量方法趋近一致,可以为今后研究提供更为准确的科学数据基础.

参考文献
[1] Zheng S K, Sun J Y, Han H. Effect of dissolved oxygen changes on activated sludge fungal bulking during lab-scale treatment of acidic industrial wastewater[J]. Environmental Science & Technology,2011,45 (20) : 8928–8934 .
[2] Mielczarek A T, Kragelund C, Eriksen P S, et al. Population dynamics of filamentous bacteria in Danish wastewater treatment plants with nutrient removal[J]. Water Research,2012,46 (12) : 3781–3795 .
[3] Graveleau L, Cotteux E, Duchène P. Bulking and foaming in France:the 1999-2001 survey[J]. Acta Hydrochimica et Hydrobiologica,2005,33 (3) : 223–231 .
[4] 王 萍, 余 志晟, 齐 嵘, et al. 丝状细菌污泥膨胀的FISH探针研究进展[J]. 应用与环境生物学报,2012,18 (4) : 705–712 .
[5] Noutsopoulos C, Mamais D, Andreadakis A. A hypothesis on Microthrix parvicella proliferation in biological nutrient removal activated sludge systems with selector tanks[J]. FEMS Microbiology Ecology,2012,80 (2) : 380–389 .
[6] Hamit-Eminovski J, Eskilsson K, Arnebrant T. Change in surface properties of Microthrix parvicella upon addition of polyaluminium chloride as characterized by atomic force microscopy[J]. Biofouling,2010,26 (3) : 323–331 .
[7] Noutsopoulos C, Mamais D, Andreadakis A. Long chain fatty acids removal in selector tanks:evidence for insufficient Microthrix parvicella control[J]. Desalination and Water Treatment,2010,23 (1-3) : 20–25 .
[8] Xie B, Dai X C, Xu Y T. Cause and pre-alarm control of bulking and foaming by Microthrix parvicella-a case study in triple oxidation ditch at a wastewater treatment plant[J]. Journal of Hazardous Materials,2007,143 (1-2) : 184–191 .
[9] Rossetti S, Tomei M C, Nielsen P H, et al. "Microthrix parvicella",a filamentous bacterium causing bulking and foaming in activated sludge systems:a review of current knowledge[J]. FEMS Microbiology Reviews,2005,29 (1) : 49–64 .
[10] Andreasen K, Nielsen P H. Growth of Microthrix parvicella in nutrient removal activated sludge plants:studies of in situ physiology[J]. Water Research,2000,34 (5) : 1559–1569 .
[11] Eikelboom D H. Filamentous organisms observed in activated sludge[J]. Water Research,1975,9 (4) : 365–388 .
[12] Jenkins D, Richard M D, Daigger G L. Manual on the causes and control of activated sludge bulking,foaming,and other solids separation separation problems (3rd ed). London,UK:IWA Publishing[M]. 2003 .
[13] Vanysacker L, Denis C, Roels J, et al. Development and evaluation of a TaqMan duplex real-time PCR quantification method for reliable enumeration of Candidatus Microthrix[J]. Journal of Microbiological Methods,2014,97 : 6–14 .
[14] Oerther D B, de los Reyes Ⅲ F L, de los Reyes M F, et al. Quantifying filamentous microorganisms in activated sludge before,during,and after an incident of foaming by oligonucleotide probe hybridizations and antibody staining[J]. Water Research,2001,35 (14) : 3325–3336 .
[15] Bradford D, Christensson C, Jakab N, et al. Molecular biological methods to detect "Microthrix parvicella" and to determine its abundance in activated sludge[J]. Water Science and Technology,1998,37 (4-5) : 37–45 .
[16] Nielsen P H, Daims H, Lemmer H, et al. FISH handbook for biological wastewater treatment:identification and quantification of microorganisms in activated sludge and biofilms by FISH. London,UK:IWA Publishing[M]. 2009 : 74 -84.
[17] Daims H, Brühl A, Amann R, et al. The domain-specific probe EUB338 is insufficient for the detection of all bacteria:development and evaluation of a more comprehensive probe set[J]. Systematic and Applied Microbiology,1999,22 (3) : 434–444 .
[18] Marneri M, Mamais D, Koutsiouki E. Microthrix parvicella and Gordona amarae in mesophilic and thermophilic anaerobic digestion systems[J]. Environmental Technology,2009,30 (5) : 437–444 .
[19] Erhart R, Bradford D, Seviour R J, et al. Development and use of fluorescent in situ hybridization probes for the detection and identification of "Microthrix parvicella" in Activated Sludge[J]. Systematic and Applied Microbiology,1997,20 (2) : 310–318 .
[20] 张星, 林炜铁, 朱雅楠. FISH技术定量解析亚硝酸盐氧化菌的条件优化[J]. 环境科学学报,2009,29 (4) : 716–722.
[21] 张勇, 宋吟玲, 史俊, 等. FISH法检测生物膜中硝化细菌流程的建立及优化[J]. 环境科技,2009,22 (4) : 34–37.
[22] 张勇, 宋吟玲. 荧光原位杂交法检测反应器中聚磷菌实验条件优化及应用[J]. 环境科学管理,2008,33 (2) : 126–129.
[23] LienenT, KleyböckerA, VerstraeteW, 等. Foam formation in a downstream digester of a cascade running full-scale biogas plant:influence of fat,oil and grease addition and abundance of the filamentous bacterium Microthrix parvicella[J]. Bioresource Technology,2014,153 : 1–7.
[24] Zhang V X, Zhou H D, Theodoulou M, et al. Quantification of Microthrix pavicella and Gordonia species using quantitative real-time PCR (qPCR) in submerged membrane bioreactors for municipal wastewater treatment[A]. In:Proceedings of the Water Environment Federation[C].[S.l.]:WEFTEC, 2010. 5614-5629.
[25] Kumari S K S, Marrengane Z, Bux F. Application of quantitative RT-PCR to determine the distribution of Microthrix parvicella in full-scale activated sludge treatment systems[J]. Applied Microbiology and Biotechnology,2009,83 (6) : 1135–1141 .
[26] Kaetzke A, Jentzsch D, Eschrich K. Quantification of Microthrix parvicella in activated sludge bacterial communities by real-time PCR[J]. Letters in Applied Microbiology,2005,40 (3) : 207–211 .
[27] Koike S, Krapac I G, Oliver H D, et al. Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period[J]. Applied and Environmental Microbiology,2007,73 (15) : 4813–4823 .
[28] 刘同军, 徐文琳, 张玉臻. 变溶菌素(Mutanolysin)研究历史和发展前景[J]. 微生物学报,2000,40 (2) : 224–227.
[29] 陈艳, 江明锋, 叶煜辉, 等. 溶菌酶的研究进展[J]. 生物学杂志,2009,26 (2) : 64–66.
[30] 叶丹, 连宾. 溶菌酶及其应用[J]. 贵州科学,2003,21 (3) : 67–70.