2. 贵州省德江县中等职业学校, 德江 565200
2. Guizhou Dejiang Secondary Vocational School, Dejiang 565200, China
生物脱氮技术因其简单高效且成本低廉而得到了广大研究者的青睐[1],传统的生物脱氨技术分为自养硝化(NH4+NH2OHNO2-NO3-)和厌氧反硝化(NO3-NO2-NON2ON2)两个过程,需要自养硝化细菌和厌氧反硝化细菌分别在严格好氧和厌氧两种不同的环境条件才能顺利完成脱氮过程,因而常被认为是一种耗能且耗时的生物脱氮方式[2,3]. 近年发现的好氧反硝化细菌,如泛养硫球菌(Thiosphaera pantotropha)[4]、硫化氢氧化菌(Paracoccus pantotrophus)[5]、嗜吡啶红球菌(Rhodococuus pyridinivorans)[6]、施氏假单胞菌(Pseudomonas stutzeri)[7,8]、雷氏普罗威登斯菌(Providencia rettgeri)[9] 和枯草芽孢杆菌(Bacillus subtilis)[10]等,能使硝化和反硝化过程在同一反应器中同时进行,可大大降低污水处理成本. 此外,有的好氧反硝化细菌在有氧条件下不仅能还原硝态氮和亚硝态氮,对铵态氮也具有脱氮作用,如2015年Zhang等[11]报道的善变副球菌(Paracoccus versutus)可同时降解铵态氮和硝态氮,各自去除率均在95%以上,这种能进行同时硝化和反硝化作用的细菌不仅能减少传统生物脱氮中需要厌氧反应器的投入成本,而且硝化作用产生的酸可中和反硝化作用产生的碱,进而还可减少添加pH调节剂的成本.
然而,同时硝化和反硝化作用会受很多条件的影响,其中低温是影响其脱氮效率的关键因素之一,是导致冬季污水脱氮处理失败的根本原因,前人研究表明,当温度低于20℃时,细菌的硝化和反硝化性能将会急剧下降,当温度低于15℃时,硝化和反硝化性能会变得很微弱,当温度低于10℃时,将会强烈抑制细菌硝化作用和反硝化作用的进行[12,13],如2012年Zhu等[14] 报道的门多萨假单胞菌(Pseudomonas mendocina)在30℃条件下对铵态氮和硝酸盐氮去除率分别为85.7%和97.7%,但当温度下降至10℃时,铵态氮和硝酸盐氮的去除率显著下降至10.1%和9.2%,表明该菌在高温条件下具有良好的硝化和反硝化活性,但低温强烈的抑制了该菌株的硝化和反硝化性能. 然而,目前报道的好氧脱氮菌多为嗜温菌,其最适脱氮温度多在30℃以上[15, 16, 17].
本实验利用前期分离的1株能在15℃条件下高效去除亚硝酸盐氮的好氧反硝化菌株:Arthrobacter arilaitensis Y-10[18],研究该菌对高浓度的铵态氮、硝态氮、亚硝态氮、有机氮以及混合氮源模拟废水中无机氮的转化能力和脱氮能力,为高浓度氮污水治理提供一种新的生物资源,实验结果表明Y-10能在15℃条件下有效进行异养硝化和好氧反硝化作用,在混合氮源模拟废水中对铵态氮的去除率高达80.0%以上. 目前还未见该种菌能进行异养硝化作用以及同时硝化与反硝化的研究报道,本工作为后期该菌在南方冬季污水脱氮处理奠定了理论基础.
1 材料与方法 1.1 材料 1.1.1 菌株来源前期分离筛选菌株Arthrobacter arilaitensis Y-10,该菌已保存在武汉中国典型培养物保藏中心,其保藏号为CGMCC NO.10536,在国际基因库中16S rRNA基因登录号为KP410739.
1.1.2 模拟废水[19]硝化模拟废水配制(g·L-1):K2HPO4 7.0,KH2PO4 3.0,MgSO4·7H2O 0.1,(NH4)2SO4 1.0,FeSO4·7H2O 0.05和CH3COONa 10 (NM).
反硝化模拟废水配制(g·L-1):K2HPO4 7.0,KH2PO4 3.0,MgSO4·7H2O 0.1,FeSO4·7H2O 0.05和CH3COONa 10,KNO3 1.8 (DM-1)或 NaNO2 0.986 (DM-2).
有机氮降解能力测试模拟废水配制(g·L-1):K2HPO4 7.0,KH2PO4 3.0,MgSO4·7H2O 0.1,蛋白胨1.575,FeSO4·7H2O 0.05 和 CH3COONa 10(OM).
同时硝化和反硝化模拟废水配制(g·L-1):K2HPO4 7.0,KH2PO4 3.0,MgSO4·7H2O 0.1,FeSO4·7H2O 0.05 和CH3COONa 10,(NH4)2SO4 1 .0+ KNO3 1.8 (SND-1)或(NH4)2SO4 1.0+ NaNO2 0.986 (SND-2),pH调为7.2.
Luria-Bertani (LB) 培养基[20] (g·L-1):蛋白胨 10,NaCl 10,yeast extract 5. 以上所有培养基均在0.11 MPa、121℃下灭菌30 min,冷却后备用.
1.1.3 主要试剂与仪器主要化学试剂购买于国药集团化学试剂有限公司; ZHWY-211B恒温培养振荡器(上海智诚分析仪器有限公司);722可见分光光度计(上海菁华科技仪器有限公司);UV755B可见紫外分光光度计(上海分析仪器总厂);DU800紫外/可见光分光光度计(BECKMAN COULTER).
1.2 菌株对不同氮源的去除能力以及转化关系挑取单菌落接种于装有100 mL LB培养基的250 mL锥形瓶中,15℃、150 r·min-1 摇床振荡培养36 h,取出8 mL菌悬液以4 000 r·min-1离心5 min,弃去上清液,取5 mL无菌水将细菌混匀洗涤一遍,再离心,弃去上清液,取2 mL无菌水,将留在离心管底部菌体悬浮混匀后全部转移到装有100 mL模拟废水的250 mL锥形瓶中,于15℃、150 r·min-1条件下振荡培养,每24 h测定铵态氮、硝态氮、亚硝态氮等各种氮浓度以及细菌生长的D600值. 总氮和细菌D600值是不经过任何处理直接摇匀取样分析测定,其它指标均将样品以8 000 r·min-1离心8 min后取上清液测定,测定结果用以下公式计算脱氮率:
式中,Rv为脱氮率,T1为模拟废水氮的初始浓度,T2为模拟废水中氮的终浓度.
1.3 检测方法总氮和有机氮浓度采用碱性过硫酸钾消解紫外分光光度法测定[22];铵态氮采用靛酚蓝比色法测定[23],硝酸盐氮采用紫外分光光度比色法,亚硝酸盐氮浓度采用N-(1-萘基)-乙二胺光度法测定[24];菌体生长量采用D600光电比浊法.
1.4 数据处理与分析每组实验设3组平行,采用Excel、SPSS 17.0和Origin 8.6软件对实验结果进行统计分析与作图.
2 结果与分析 2.1 菌株Y-10对铵态氮的去除能力Y-10菌株在NM模拟废水中的生长状况以及对铵态氮的转化能力如图 1所示,接菌后2 d内,该菌的D600值快速增长到1.46,随后缓慢增至1.73,铵态氮和总氮的去除量随细菌的生长繁殖而增加,总体表现为:4 d内,铵态氮由208.43 mg·L-1降至72.92 mg·L-1,去除率为65.0%,相应的去除速率为1.88 mg·(L·h)-1;总氮由220.08 mg·L-1降至155.49 mg·L-1,去除率为29.3%,在整个硝化反应过程中,没有检测到硝态氮和亚硝态氮等中间脱氮产物,总氮降低表明部分铵态氮转化为气态氮释放入空气中. 据报道,铵态氮可以通过两种途径被转化为气态氮,其一为:NH4+NH2OHNO2-NO3-,然后再还原为气态氮;其二为:NH4+NH2OHNON2O[25]直接产生气态氮,通过这一途径进行生物脱氮作用,不会产生硝态氮和亚硝态氮的积累,因此,根据菌株Y-10对去除铵态氮时中间产物和总氮含量检测分析推测,铵态氮可能是以第二条途径去除的,这不同于Jin等[20]报道的Pseudomonas sp.是以硝化作用产物(硝态氮或亚硝态氮)进行反硝化作用的报道.
![]() | 图 1 菌株Y-10对铵态氮的去除能力 Fig. 1 Ammonium nitrogen removal ability of strain Y-10 |
Y-10菌株在DM-1模拟废水中的生长繁殖和对高浓度硝态氮的去除能力如图 2所示,在15℃、3 d内能将201.16 mg·L-1的硝态氮降至0.01 mg·L-1,去除速率为2.79 mg·(L·h)-1,但硝态氮会迅速地转化为亚硝态氮,刚接种就检测到4 mg·L-1左右的亚硝态氮积累,随着培养时间延长,亚硝态氮由最初的4.52 mg·L-1增加至第2 d的130.41 mg·L-1,随后到第4 d又降至101.05 mg·L-1. 总氮去除率为48.9%,比以铵态氮为唯一氮源时要高,表明Y-10菌株好氧反硝化脱氮能力比异养硝化脱氮能力更强.
![]() | 图 2 菌株Y-10对硝酸盐氮的去除能力 Fig. 2 Nitrate nitrogen removal ability of strain Y-10 |
根据以上研究结果分析,该菌去除硝态氮的途径为:NO3--NNO2--N,然后再被还原为气态氮.
2.3 菌株Y-10对亚硝酸盐氮的转化菌株Y-10接种在DM-2模拟废水中的硝态氮去除能力以及相应的氮转化关系如图 3所示,在以亚硝态氮为唯一氮源的培养基中生长时,其延滞期明显较短且4 d内未进入衰亡期,表明高浓度的小硝态氮对细菌的生长没有抑制作用. 菌株Y-10的生长与亚硝酸盐氮的去除量表现出了正相关关系,在4 d内,细菌的D600值由0.16增长至1.67,相应的亚硝态氮由194.33 mg·L-1降至75.43 mg·L-1,去除率为61.2%;总氮由213.26 mg·L-1降至125.38 mg·L-1,去除率为41.2%,比以硝态氮为唯一氮源时去除率低;此外,脱氮过程中有微量的铵态氮积累,这部分氮源可能源于少量死亡的细菌,与He等[26]和Li等[27]报道的反硝化过程中具有少量铵态氮积累一致. 在整个脱氮过程中没有检测到硝态氮,因此,该菌去除亚硝酸盐氮主要途径为:NO2--N气态氮,这与2001年Philippot等[28] 报道反硝化脱氮酶系催化亚硝酸盐氮还原途径一致.
![]() | 图 3 菌株Y-10对亚硝酸盐氮的去除能力 Fig. 3 Nitrite nitrogen removal ability of strain Y-10 |
据报道,水体中有机氮占总氮含量的14%~90%,会促进藻类大量繁殖和水体富营养化[29],本实验以蛋白胨为有机氮源(OM),检验Y-10菌株对有机氮的利用及脱氮能力,由图 4所示,
![]() | 图 4 菌株Y-10对有机氮的利用能力 Fig. 4 Organic nitrogen utilization ability of strain Y-10 |
蛋白胨包含微量的铵态氮和少量的硝态氮,但不含亚硝态氮. 接菌后,细菌可利用蛋白胨为氮源,进行快速生长,1 d内细菌的D600值由0.52快速增长至1.55,随后增长至1.76进入稳定期,其脱氮能力表现为:铵态氮由0.83 mg·L-1下降至0.07 mg·L-1,去除率为91.6%;硝态氮由48.22 mg·L-1降至25.53 mg·L-1,去除率为47.1%;总氮由227.08 mg·L-1降至205.11 mg·L-1,去除率仅为9.7%,铵态氮由于量少表现出了较高的脱氮率,硝态氮和总氮的去除率较低,其原因可能是有机氮需先转化成为铵态氮和硝态氮后,才能被细菌快速地还原,而很难直接在短时间内将其还原为气态氮. 实验结果表明,菌株可利用有机氮进行快速繁殖,降低水体中有机氮含量,同时促进其它无机氮的降解,进而降低水体富营养化程度.
2.5 菌株Y-10在无机氮混合模拟废水中的脱氮能力菌株Y-10在铵态氮和硝态氮为混合氮源模拟废水(SND-1)中对氮的转化能力如图 5所示,结果表明该菌能同时降解模拟废水中的铵态氮和硝态氮,15℃、4 d内该菌能将铵态氮由198.06 mg·L-1降至39.56 mg·L-1,去除率为80.0%;硝态氮由206.26 mg·L-1降至158.54 mg·L-1,去除率为23.2%,脱氮过程有亚硝态氮积累,其浓度由最初的0.4 mg·L-1增至25 mg·L-1 左右;总氮由410.27 mg·L-1降至350.45 mg·L-1,去除率为14.6%;此外,Y-10菌株在混合模拟废水中的生长延滞期比以硝态氮为唯一氮源时短,表明铵态氮更有利于细菌生长繁殖.
![]() | 图 5 菌株Y-10在铵态氮和硝酸盐氮混合模拟废水中的脱氮能力 Fig. 5 Nitrogen removal capacity of strain Y-10 in simulated wastewater containing ammonium nitrogen and nitrate nitrogen |
菌株Y-10对以铵态氮与亚硝态氮为混合氮源的模拟废水(SND-2)中氮转化能力如图 6所示,随着培养时间延长铵态氮逐渐降低,4 d内由194.16 mg·L-1降至13.82 mg·L-1,去除率为92.9%;亚硝态氮由199.25 mg·L-1降至188.26 mg·L-1,去除率仅有5.5%;总氮由408.71 mg·L-1降至364.02 mg·L-1,去除率仅为10.9%,整个脱氮过程中没有硝态氮的积累. 混合氮源模拟废水研究表明菌株Y-10在具有优先利用铵态氮的能力.
![]() | 图 6 菌株Y-10在铵态氮和亚硝酸盐氮混合模拟废水中的脱氮能力 Fig. 6 Nitrogen removal capacity of strain Y-10 in simulated wastewater containing ammonium nitrogen and nitrite nitrogen |
本文对菌株Y-10的异养硝化、好氧反硝化以及同时硝化和反硝化作用进行了探讨,研究发现该菌具有较强的异养硝化作用,高效去除铵态氮的特点显著不同于2015年Ji等[30]报道的菌株Pseudomonas stutzeri C3,菌株C3虽然能进行反硝化作用去除硝态氮,但却因为该菌不含氨单加氧酶基因(amoA)而不能进行异养硝化脱铵作用,菌株Y-10的脱氨效率较高,在15℃条件下,4 d内对铵态氮的去除率达65.0%以上,高于Huang等[31]报道的耐冷菌(Acinetobacter sp.)Y16,该菌在其最优温度(20℃)条件下,对铵氮的去除率为(61.40±1.01)%;菌株Y-10对铵态氮的去除速率为1.88 mg·(L·h)-1,明显高于已报道的多种异养硝化菌株,如Pesudomonas alcaligenes AS-1 [1.15 mg·(L·h)-1][32],Pesudomonas sp. [1.38 mg·(L·h)-1][20] 和 Bacillus sp. LY [0.43 mg·(L·h)-1][33]等. 表明Y-10菌株是1株具有较强异养硝化功能的菌株.
硝态氮因其具有较好的稳定性而成为难以彻底去除的含氮化合物[32],菌株Y-10在3 d内对硝态氮的去除速率为2.79 mg·(L·h)-1,显著高于菌株Rhodococcus sp. CPZ24 对硝态氮的去除速率[0.93 mg·(L·h)-1,30℃][33];菌株Y-10对亚硝态氮和相应的总氮去除率分别为61.2%和41.2%,其总氮去除率显著高于Zheng 等[36]报道的耐冷菌(Psychrobacter sp.),该菌在其最适温度(20℃)条件下,对总氮的去除率只有31.89%,但两株菌对亚硝态氮的去除率相近,Psychrobacter sp.对亚硝态氮的去除率为63.50%;菌株Y-10对亚硝态氮的去除速率为29.73 mg·(L·d)-1,显著高于Wan等[37]报道的好氧反硝化菌株Pseudomonas sp. yy7脱氮速率,该菌在25℃条件下对亚硝态氮的去除速率仅为18.20 mg·(L·d)-1. 菌株Y-10能还原硝态氮和亚硝态氮的特点,与2015年Zhang等[11]研究报道的具有同时硝化和反硝化功能的Paracoccus versutus LYM菌株不能单独利用亚硝态氮进行生物脱氮作用不同,总之,菌株Y-10能在低温条件下快速高效进行硝化和反硝化作用,且克服了低温导致生物脱氮效率低的问题.
此外,根据对菌株Y-10脱氮中间产物检测分析,以铵态氮和亚硝态氮为唯一氮源时,无其它无机氮积累,这与Sun等[38]报道的异养硝化-好氧反硝化菌株Pseudomonas stutzeri T13脱铵态氮一致,但显著不同于Chen等[35]报道的异养硝化-好氧反硝化菌株Rhodococcus sp. CPZ24,该菌脱铵态氮时有明显的硝态氮和亚硝态氮积累,这表明具有异养硝化和好氧反硝化能力的不同菌株脱铵态氮的方式不同. 根据脱铵态氮的中间产物分析,菌株 Y-10对铵态氮去除途径可能为NH4+-N NH2OH NON2O;研究结果还发现,菌株Y-10在含有硝态氮的模拟废水中进行生物脱氮时均会有亚硝态氮的积累,这与Liang等[39]报道的好氧反硝化细菌Paracoccus denitrificans DL-23脱氮积累中间产物一致,表明菌株Y-10的反硝化途径必经亚硝态氮中间过程,推测其反硝化途径可能为NO3--NNO2--NNON2ON2.
4 结论(1)在15℃条件下,菌株Arthrobacter arilaitensis Y-10能以单一氮源进行高效异养硝化和好氧反硝化作用,4 d内分别可将208.43 mg·L-1铵态氮降至72.92 mg·L-1,去除率65.0%;对201.16 mg·L-1硝态氮去除率为100%,194.33 mg·L-1亚硝态氮降至75.43 mg·L-1,去除率为61.2%.
(3)根据菌株Y-10对单一氮源的脱氮中间产物分析,异养硝化脱铵过程无硝态氮和亚硝态氮的积累,好氧反硝化还原硝态氮过程有亚硝态氮的积累.
(4)在混合模拟废水中,铵态氮的去除率可达80%以上,硝态氮和亚硝态氮的去除率分别只有23.2%和10.9%. 此外,Y-10菌株对高浓度的铵态氮、硝态氮以及亚硝态氮均具有较高的耐受性.
[1] | Takenaka S, Zhou Q, Kuntiya A, et al. Isolation and characterization of thermotolerant bacterium utilizing ammonium and nitrate ions under aerobic conditions[J]. Biotechnology Letters, 2007, 29 (3): 385-390. |
[2] | Khardenavis A A, Kapley A, Purohit H J. Simultaneous nitrification and denitrification by diverse Diaphorobacter sp.[J]. Applied Microbiology and Biotechnology, 2007, 77 (2): 403-409. |
[3] | Khin T, Annachhatre A P. Novel microbial nitrogen removal processes[J]. Biotechnology Advances, 2004, 22 (7): 519-532. |
[4] | Robertson L A, Kuenen J G. Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria[J]. Antonie van Leeuwenhoek, 1990, 57 (3): 139-152. |
[5] | 杨航, 黄钧, 刘博. 异养硝化-好氧反硝化菌 Paracoccus pantotrophus ATCC 35512 的研究进展[J].应用生态学报,2008, 14 (4): 585-592. |
[6] | 陈昢圳, 王立刚, 王迎春, 等. 异养硝化-好氧反硝化菌的筛选及脱氮性能的实验研究[J]. 环境科学, 2009, 30 (12): 3614-3618. |
[7] | Takaya N, Catalan-Sakairi M A B, Sakaguchi Y, et al. Aerobic denitrifying bacteria that produce low levels of nitrous oxide[J]. Applied and Environmental Microbiology, 2003, 69 (6): 3152-3157. |
[8] | 李焱生, 魏民, 张艾晓, 等. 一株异养型亚硝酸盐氧化细菌的分离及其降解特性的研究[J]. 生物技术通报, 2010, (5): 196-202. |
[9] | Taylor S M, He Y L, Zhao B, et al. Heterotrophic ammonium removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Providencia rettgeri YL[J]. Journal of Environmental Sciences, 2009, 21 (10): 1336-1341. |
[10] | Yang X P, Wang S M, Zhang D W, et al. Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Bacillus subtilis A1[J]. Bioresource Technology, 2011, 102 (2): 854-862. |
[11] | Zhang Y, Shi Z, Chen M X, et al. Evaluation of simultaneous nitrification and denitrification under controlled conditions by an aerobic denitrifier culture[J]. Bioresource Technology, 2015, 175 : 602-605. |
[12] | Kroupova H K, Machova J, Svobodova Z. Nitrite influence on fish: a review[J]. Veterinární Medicína, 2005, 50 (11): 461-471. |
[13] | Rodriguez-Caballero A, Hallin S, Páhlson C, et al. Ammonia oxidizing bacterial community composition and process performance in wastewater treatment plants under low temperature conditions[J]. Water Science & Technology, 2012, 65 (2): 197-204. |
[14] | Zhu L, Ding W, Feng L J, et al. Characteristics of an aerobic denitrifier that utilizes ammonium and nitrate simultaneously under the oligotrophic niche[J]. Environmental Science and Pollution Research, 2012, 19 (8): 3185-3191. |
[15] | 张苗, 黄少斌. 高温好氧反硝化菌的分离鉴定及其反硝化性能研究[J]. 环境科学, 2011, 32 (1): 259-265. |
[16] | Shi Z, Zhang Y, Zhou J T, et al. Biological removal of nitrate and ammonium under aerobic atmosphere by Paracoccus versutus LYM[J]. Bioresource Technology, 2013, 148 : 144-148. |
[17] | Guo Y, Zhou X M, Li Y G, et al. Heterotrophic nitrification and aerobic denitrification by a novel Halomonas campisalis[J]. Biotechnology Letters, 2013, 35 (12): 2045-2049. |
[18] | He T X, Li Z L. Identification and denitrification characterization of a novel hypothermia and aerobic nitrite-denitrifying bacterium, Arthrobacter arilaitensis strain Y-10[J]. Desalination and Water Treatment, 2015: 1-9, doi: 10.1080/19443994. 2015. 1099471. |
[19] | Pal R R, Khardenavis A A, Purohit H J. Identification and monitoring of nitrification and denitrification genes in Klebsiella pneumoniae EGD-HP19-C for its ability to perform heterotrophic nitrification and aerobic denitrification[J]. Functional & Integrative Genomics, 2015, 15 (1): 63-76. |
[20] | Jin R F, Liu T Q, Liu G F, et al. Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium Pseudomonas sp. ADN-42[J]. Applied Biochemistry and Biotechnology, 2015, 175 (4): 2000-2011. |
[21] | Song Z F, An J, Fu G H, et al. Isolation and characterization of an aerobic denitrifying Bacillus sp. YX-6 from shrimp culture ponds[J]. Aquaculture, 2011, 319 (1-2): 188-193. |
[22] | HJ 636-2012, 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法[S]. |
[23] | Kempers A J, Kok C J. Re-examination of the determination of ammonium as the indophenol blue complex using salicylate[J]. Analytica Chimica Acta, 1989, 221 : 147-155. |
[24] | 国家环境保护总局. 水和废水监测分析方法[M]. (第四版). 北京: 中国环境科学出版社, 2002. |
[25] | Hu Z, Lee J W, Chandran K, et al. Nitrous oxide (N2O) emission from aquaculture: A review[J]. Environmental Science & Technology, 2012, 46 (12): 6470-6480. |
[26] | He T, Li Z, Sun Q, et al. Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion[J]. Bioresource Technology, 2016, 200 : 493-499. |
[27] | Li C E, Yang J S, Wang X, et al. Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24[J]. Bioresource Technology, 2015, 182 : 18-25. |
[28] | Philippot L, Mirleau P, Mazurier S, et al. Characterization and transcriptional analysis of Pseudomonas fluorescens denitrifying clusters containing the nar, nir, nor and nos genes[J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 2001, 1517 (3): 436-440. |
[29] | Seitzinger S P, Sanders R W. Contribution of dissolved organic nitrogen from rivers to estuarine eutrophication[J]. Marine Ecology Progress Series, 1997, 159 : 1-12. |
[30] | Ji B, Yang K, Wang H Y, et al. Aerobic denitrification by Pseudomonas stutzeri C3 incapable of heterotrophic nitrification[J]. Bioprocess and Biosystems Engineering, 2015, 38 (2): 407-409. |
[31] | Huang X F, Li W G, Zhang D Y, et al. Ammonium removal by a novel oligotrophic Acinetobacter sp. Y16 capable of heterotrophic nitrification-aerobic denitrification at low temperature[J]. Bioresource Technology, 2013, 146 : 44-50. |
[32] | Su J J, Yeh K S, Tseng P W. A Strain of Pseudomonas sp. isolated from piggery wastewater treatment systems with heterotrophic nitrification capability in Taiwan[J]. Current Microbiology, 2006, 53 (1): 77-81. |
[33] | Zhao B, He Y L, Zhang X F. Nitrogen removal capability through simultaneous heterotrophic nitrification and aerobic denitrification by Bacillus sp. LY[J]. Environmental Technology, 2010, 31 (4): 409-416. |
[34] | Rossi F, Motta O, Matrella S, et al. Nitrate removal from wastewater through biological denitrification with OGA 24 in a batch reactor[J]. Water, 2015, 7 (1): 15-62. |
[35] | Chen P Z, Li J, Li Q X, et al. Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium Rhodococcus sp. CPZ24[J]. Bioresource Technology, 2012, 166 : 266-270. |
[36] | Zheng H Y, Liu Y, Sun G D, et al. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium[J]. Journal of Environmental Sciences, 2011, 23 (11): 1888-1893. |
[37] | Wan C L, Yang X, Lee D J, et al. Aerobic denitrification by novel isolated strain using NO2--N as nitrogen source[J]. Bioresource Technology, 2011, 102 (15): 7244-7248. |
[38] | Sun Y L, Li A, Zhang X N, et al. Regulation of dissolved oxygen from accumulated nitrite during the heterotrophic nitrification and aerobic denitrification of Pseudomonas stutzeri T13[J]. Applied Microbiology and Biotechnology, 2015, 99 (7): 3243-3248. |
[39] | Liang S C, Zhao M, Lu L, et al. Isolation and characteristic of an aerobic denitrifier with high nitrogen removal efficiency[J]. African Journal of Biotechnology, 2011, 10 (52): 10648-10656. |