环境科学  2015, Vol. 36 Issue (12): 4659-4666   PDF    
浙江省瓯江氨氧化古菌和氨氧化细菌分布及多样性特征
李虎1,2, 黄福义1, 苏建强1 , 洪有为1, 俞慎1    
1. 中国科学院城市环境研究所城市环境与健康重点实验室, 厦门 361021;
2. 中国科学院大学, 北京 100049
摘要: 氨氧化古菌(ammonia-oxidizing archaea,AOA)和氨氧化细菌(ammonia-oxidizing bacteria,AOB)在生物地球化学氮循环过程中发挥着重要作用. 河流是关系人类生产和生活的重要生态系统,蕴含大量氮循环功能微生物. 本研究采用变性梯度凝胶电泳(denaturing gradient gel electrophoresis, DGGE)和荧光定量PCR(quantitative PCR, qPCR)技术对沉积物AOA、AOB群落进行结构和丰度分析,在瓯江感潮河段尺度上探究AOA、AOB分布规律及影响AOA、AOB群落结构与丰度的因素. 结果表明, AOA群落结构差异不显著,影响其分布的主要因素为NH4+和TS; AOB群落结构存在显著差异,序列分析比对表明AOB分为NitrosospiraNitrosomonas,其中90%序列为Nitrosospira, EC、pH、NH4+、NO3-、TC和TN是影响AOB群落组成的重要环境因素; 总硫(TS)和电导率(EC)分别是影响AOA和AOB多样性的主要因素; AOA丰度显著高于AOB; EC、NH4+-N和NO3--N是影响AOA和AOB丰度的主要环境因素. 研究表明,瓯江感潮河段沉积物中AOA和AOB群落结构和丰度均显著受环境因素影响,AOA在表层沉积物氨氧化过程中可能占主导位置.
关键词: 氨氧化古菌     氨氧化细菌     感潮河段     沉积物     群落组成     多样性    
Distribution and Diversity of Ammonium-oxidizing Archaea and Ammonium-oxidizing Bacteria in Surface Sediments of Oujiang River
LI Hu1,2, HUANG Fu-yi1, SU Jian-qiang1 , HONG You-wei1, YU Shen1    
1. Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) play important roles in the biogeochemical nitrogen cycle. Rivers are important ecosystems containing a large number of functional microbes in nitrogen cycle. In this study, denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (qPCR) technology were used to analyze the distribution and diversity of AOA and AOB in sediments from Oujiang. The results showed that the AOA community structure was similar among various sites, while the AOB community structure was significantly different, in which all detected AOB sequences were classified into Nitrosospira and Nitrosomonas, and 90% affiliated to Nitrosospira. The community composition of AOA was influenced by NH4+ and TS, in addition, the AOB composition was affected by NH4+, EC, pH, NO3-, TC and TN. Total sulfur (TS) and electrical conductivity (EC) were the major factors influencing the diversity of AOA and AOB, respectively. AOA abundance was significantly higher than that of AOB. EC, NH4+-N and NO3--N were the main environmental factors affecting the abundance of AOA and AOB. This study indicated that the community composition and diversity of AOA and AOB were significantly influenced by environmental factors, and AOA might be dominant drivers in the ammonia oxidation process in Oujiang surface sediment.
Key words: ammonium-oxidizing archaea     ammonium-oxidizing bacteria     tidal river     sediment     community composition     diversity    

河流是影响人类生活和社会经济发展的重要生态系统,其中孕育着大量微生物资源,对生物地球化学循环起着举足轻重的作用. 浙江省瓯江系浙江省第二大河流系统,以其沉积物作为研究对象,探究其中氮循环相关功能微生物群落结构及丰度,能对阐述氮循环以及生态环境的改变等提供重要的理论依据.

目前对于河流沉积物的研究主要集中在某个点或区域的微生物群落[1, 2]或某种因素的改变对微生物的影响[3, 4],然而对于河流大尺度的微生物群落结构及丰度研究报道较少,特别是感潮河段. 由于不同区域人类生活生产活动不一、沿岸植物分布不一和受潮汐影响不一等,可能导致微生物的分布和功能不同,所以,对河流沉积物中功能微生物群落和丰度进行研究更加具有指导和现实意义.

氨氧化菌(ammonia-oxidizer)包括氨氧化古菌AOA和氨氧化细菌AOB,是氮循环过程中重要功能微生物,其催化的氨氧化过程是硝化过程中的限速步骤[5],在整个生物地球化学氮循环过程中发挥着重要作用. 大量研究表明,氨氧化细菌和氨氧化古菌存在于很多生态系统中,如水稻土[6]、酸性茶园土[7]、深海沉积物[8]、河流沉积物[9]和活性污泥[10]等. 研究表明[11, 12, 13],在酸性土壤中,AOA是好氧氨氧化的主要贡献者. Nicol等[14]研究表明,AOA数量随着pH值增加而减少. 在含盐量较高,如入海口及红树林沉积物中AOA同样占主导位置[15, 16]. 氨单加氧酶(ammonia monooxygenase,AMO)是催化氨氧化过程中关键的酶,由amo基因编码,广泛分布在氨氧化菌基因组中,是检测氨氧化古菌和氨氧化细菌的重要功能靶基因. Amo基因簇包含有amoAamoBamoC亚单元[17],目前大部分研究选定amoA作为检测氨氧化菌的目标功能基因[18, 19, 20],可以很好地反映不同生态系统中AOA和AOB的群落结构以及丰度. 目前对河流感潮不同区域氨氧化作用的研究还比较少见,本研究以功能基因amoA为靶基因,分析浙江省瓯江感潮河段不同区域表层沉积物中AOA和AOB群落结构及丰度,结合沉积物理化性质,阐述影响瓯江AOA和AOB群落结构及丰度的主要环境因素,以期为完善河流氮循环及河流的治理提供科学的理论依据.

1 材料与方法 1.1 沉积物样品采集

浙江省瓯江感潮河段(图 1)表层沉积物(20个样品,0~20 cm)采集于2010年5月,用自封袋密封置于-20℃车载冰箱,运回实验室,取出一部分贮存于-80℃用于DNA提取,其余用于沉积物理化性质等测定.

图 1 瓯江流域水土界面沉积物样品采样站位及分区示意 Fig. 1Surface-sediment sampling sites and regions along Oujiang River
1.2 沉积物理化性质测定

水 ∶土=2.5 ∶1,220 r ·min-1振荡1 h,测定沉积物pH和电导率EC(XL60,Fisher,美国); 将沉积物冷冻干燥过100目筛子,进行总碳(TC)、总氮(TN)和总硫(TS)测定(Elementar VarioMax Analyzer,美国); 2 mol ·L-1 KCl (水 ∶土=6 ∶1)浸提沉积物,并用0.45 μm滤膜进行过滤,测定铵态氮(NH4+-N)和硝态氮(NO3--N)(流动注射分析仪,LACHAT QC8500,美国). 根据电导率将瓯江感潮段分为淡水区、淡咸混合区、咸水区、咸海混合区及海水区(图 1).

1.3 DNA提取及amoA基因定量

取大约0.5 g冷冻干燥沉积物,按照FastDNA® Spin Kit for Soil试剂盒说明书提取沉积物微生物DNA,用1.0%琼脂糖凝胶电泳进行验证,并用Quant-iTTM PicoGreen dsDNA Assay Kit (Invitrogen,美国)测定DNA浓度. DNA储存在-20℃直到后续实验使用.

采用DGGE技术分析AOA和AOB群落结构,PCR扩增体系及条件如下:AOA amoA基因扩增体系(50 μL):25.0 μL DreamTaq Green PCR Master Mix (Thermo Scientific,德国)、引物(10 μmol ·L-1)[13]各1.0 μL、牛血清蛋白(BSA,20 mg ·mL-1)0.5 μL和2.0 μL(100~200 ng)DNA作为扩增模板,剩余体积用灭菌超纯水补足; 反应条件:AOA amoA基因:95℃ 5 min,94℃ 45 s、 53.5℃ 1 min、72℃ 1 min循环35次,终延伸72℃ 15 min; AOB amoA基因采用Touch down PCR,具体如下:94℃ 4 min,94℃ 1 min、61.5℃ 1 min、72℃ 1 min 20循环,每个循环退火温度降低0.5℃,94℃ 1 min、51.5℃ 1 min、72℃ 1 min 循环20次,终延伸72℃ 8 min. 对amoA基因进行定量分析,10倍梯度稀释的已知拷贝数含有功能基因的质粒做标准曲线,扩增效率90%~110%,R2 > 0.99才使用,以保证定量数据的准确性. 实时荧光定量PCR扩增体系(20 μL)包括:10.0 μL FastStart Universal SYBR Green Master (ROX),引物(10 μmol ·L-1)各0.5 μL,2.0 μL(10~20 ng)DNA、BSA(20 mg ·mL-1,AOA amoA 1.0 μL,AOB amoA 0.2 μL),扩增具体条件参见文献[13],使用ABI 7500实时荧光定量系统(美国).

1.4 AOA和AOB群落结构分析

采用DGGE技术分析瓯江感潮河段表层沉积物AOA和AOB群落结构组成. 采用带GC夹的引物[21]分别对AOA和AOB amoA基因进行特异性扩增. 分别制备6%聚丙烯酰胺变性梯度为20%~50%(AOA amoA基因)和6%聚丙烯酰胺变性梯度为20%~55%(AOB amoA基因)的DGGE凝胶[13],60 V电泳1 h后,立即100 V电泳16 h,切胶回收进行测序. DGGE指纹图谱用Quantity one分析,回收条带进行测序后,在NCBI GenBank中进行比对,用MEGA 6.0进行序列处理及系统发育树构建.

2 结果与分析 2.1 沉积物理化性质

表层沉积物均为碱性(pH 7.25~8.32),淡水区域pH显著低于其他区域; NH4+-N(0.88~52.10 mg ·kg-1)分布存在较大差异,且淡水区域显著高于其他区域含量,与周磊榴等[22]研究比较,咸海混合区属于低氨氮区域,而其他区域NH4+-N含量较高,属于高氨氮区域; NH4+-N浓度与EC呈显著负相关(R2=0.54,P < 0.05); 咸海混合区沉积物NO3--N含量最高,显著高于其他区域含量,且NO3--N与EC显著正相关(R2=0.53,P < 0.05). 瓯江感潮河段沉积物中TC(5.02~13.21 g ·kg-1),TN(0.33~1.13 g ·kg-1)和TS(0.86~4.92 g ·kg-1)在各个区域间没有显著性差异(表 1).

表 1 瓯江流域水土界面沉积物理化性质 Table 1 Physico-chemical properties of surface sediments along Oujiang River
2.2 氨氧化古菌(AOA)和氨氧化细菌(AOB)群落结构分析

通过DGGE分子生物学技术手段对沉积物AOA群落结构进行分析[图 2(a)],结果表明:瓯江感潮河段各区域间AOA群落结构相似性均在56%以上,其中相似性最高达到95.9%; 聚类分析[图 2(b)]表明,OJ2、OJ3和OJ6的AOA群落结构相似性最高,而OJ4的AOA群落结构与其他区域存在较大差异. AOA群落组成α多样性(表 2)显示,Shannon指数为2.64~2.89,OJ4多样性最高.

(a)分子指纹图谱; (b)聚类分析 图 2AOA与AOB DGGE分子指纹图谱及聚类分析 Fig. 2 AOA and AOB DGGE profile and Cluster analysis

表 2 瓯江感潮河段表层沉积物AOA和AOB群落组成多样性 Table 2 Diversity of AOA and AOB community composition in surface sediments from estuary of Oujiang River

从DGGE胶上回收得到9条AOA条带,进行测序、NCBI基因库比对、构建系统发育树(图 3)分析表明:所有的条带均被归为Sediment簇[23]. 冗余分析(redundancyanalysis,RDA)表明,TS和NH4+-N是影响AOA群落结构的主要因素,第一轴解释量为55.02%,第二轴解释量为13.04%(图 4); 相关性分析表明,TS与AOA多样性显著相关(R2>0.85,P < 0.05).

系统发育树采用Neighbor-joining方法构建,bootstrap为1 000,节点数值小于50%的数值未显示 图 3 基于AOA amoA基因的系统发育树 Fig. 3Phylogenetic tree of AOA based on amoA gene

图 4 环境因子对AOA和AOB群落结构影响冗余分析 Fig. 4 Redundancy analysis of the effect of environmental factors on AOA and AOB community composition

瓯江表层沉积物AOB微生物群落结构分析[图 2(a)]表明:不同区域沉积物中氨氧化细菌群落结构相似性为49.4%~73.7%; 聚类分析[图 2(b)]显示,OJ4和OJ5单独聚在一支,说明其氨氧化细菌群落结构相似,并与其他采样点存在差异,OJ2和OJ3群落结构相似.

AOB DGGE切胶所得22条带,经过测序、NCBI基因库比对和系统发育树(图 5)分析表明:AOB隶属于NitrosospiraNitrosomonas,其中90.48%属于Nitrosospira. 其中Nitrosospira被分为cluster I-1和cluster I-2两个亚分支. RDA分析结果表明,瓯江感潮河段沉积物AOB群落结构主要受EC、NH4+-N、NO3--N、pH、TC和TN影响,其中第一轴解释量达到44.57%,第二轴解释量为22.27%(图 4). 多样性指数(表 2)显示,瓯江AOB Shannon指数为2.83~3.56,且EC与AOB多样性呈显著负相关(R2 > 0.81,P < 0.05).

系统发育树采用Neighbor-joining方法构建,bootstrap为1 000,节点数值小于50%的数值未显示 图 5 基于AOB amoA基因的系统发育树 Fig. 5 Phylogenetic tree of AOB based on amoA gene
2.3 功能基因amoA丰度

瓯江感潮区表层沉积物中AOA拷贝数为(1.67±0.10)×106~(5.94±0.29)×108 copies ·g-1,各区域间没有明显的数量变化(图 6); AOB拷贝数为(2.29±0.61)×104~(2.19±0.07)×107 copies ·g-1,咸海混合区和海水区丰度显著高于其他3个区域(图 6); AOA丰度显著高于AOB(P < 0.01).

图 6 瓯江感潮河段表层沉积物AOA和AOB丰度 Fig. 6 Abundance of AOA and AOB in surface sediments from estuary of Oujiang River

EC、NH4+-N和NO3--N是显著影响AOA amoA、AOB amoA基因丰度的重要因素,其中EC、NO3--N分别与AOA和AOB呈正相关; NH4+-N与AOA和AOB呈显著负相关; AOA amoA丰度与AOB存在极显著正相关(表 3),表明AOA与AOB不存在竞争关系,而是协同作用.

表 3 瓯江感潮河段表层沉积物理化性质与微生物功能基因Pearson相关系数1) Table 3 Pearson correlation coefficients between physico-chemical properties and microbial functional gene abundance in surface sediments from estuary of Oujiang River
3 讨论

氨氧化进程是表层沉积物氮循环的重要组成部分,本研究采用DGGE及qPCR技术分别分析了瓯江感潮区氨氧化菌(AOA和AOB)群落结构及丰度. 各区域间AOA组成相似性为56.3%~95.9%,均归为sediment簇,AOA适应范围较广,在铵盐低,酸性土及氧含量低等环境中均能生存[5, 24, 25, 26],瓯江各区域表层沉积物中养分及条件足以供AOA生存繁殖,其结构不存在显著性差异; AOB群落组成在各区域间存在显著性差异,相似性仅为49.4%~73.7%,AOB需要在铵盐高等营养较丰富的环境中生存,容易受环境因素的影响[27],在瓯江各区域,由于表层沉积物理化性质存在差异,所以AOB的群落组成受到显著影响. 系统发育树表明,瓯江感潮表层沉积物中AOB分为NitrosospiraNitrosomonas,其中Nitrosospira占主要部分,研究表明,土壤中的AOB主要是Nitrosospira[11, 28],而沉积物中Nitrosomonas占主要部分[29]. 但Wang等[30]指出,在密云水库表层沉积物中提取得到的AOB均为Nitrosospira,与本研究所得结果一致. 研究表明[7, 31, 32, 33],NH4+和pH是影响AOA和AOB群落结构的主要因素. 本研究中,TS和NH4+-N是影响AOA群落结构的主要环境因素,且TS与AOA Shannon指数显著相关. 研究表明[34],泉古菌pJP41代表类群为依赖硫元素进行无机化能型营养,说明硫元素对AOA的生长是一个重要元素,影响AOA的分布. NH4+-N作为氨氧化底物,为AOA的生长繁殖提供能量,影响AOA群落结构.有研究表明TN对AOB群落组成存在显著影响[30],本文影响AOB群落组成的主要因素为EC、pH、NH4+、NO3-、TC和TN. AOA Shannon指数为2.64~2.89,显著低于AOB (2.83~3.56). AOA多样性在感潮河段呈现先增加后减少的趋势,OJ4多样性最高,表明OJ4所在区域的环境最适合多种AOA的生长与繁殖; AOB随着盐分的增加,多样性下降,表明AOB对渗透压敏感,比较适合生存在渗透压低的生境中. TS和EC分别是影响AOA和AOB群落多样性的环境因素. EC与AOB多样性成显著负相关,推测渗透压越大,导致对渗透压敏感的AOB脱水抑制甚至死亡,造成AOB多样性减少. 高盐分环境中,由于沉积物中的渗透压增高,微生物的酶活性及其生命活动受到抑制[35],钟丽华等[36]研究表明,低盐分能够促进氨氧化菌的增长,而高盐分则抑制其生长.

本研究通过qPCR技术分析了瓯江感潮区AOA和AOB丰度,结果显示AOA丰度显著高于AOB,表明瓯江表层沉积物氨氧化过程中AOA发挥着主要作用. 研究表明在珠江入海口[15],水库沉积物[30]碱性条件下,AOA占据主要位置,与本研究结果一致. 瓯江表层沉积物AOA与AOB丰度在不同区域存在显著差异,其中EC,NH4+-N及NO3--N是影响AOA及AOB的主要环境因子. 高盐环境下,受渗透压的影响,微生物丰度降低[35],但在本研究中发现,AOA和AOB丰度均随着EC增加而增加,推测瓯江感潮区EC处于较低水平. NH4+-N和NO3--N分别与AOA、AOB丰度呈显著负相关和正相关. 高浓度铵盐降低了AOB丰度,可能是由于瓯江淡水区、淡咸混合区和咸水区铵盐浓度太高,已经对AOB产生了抑制作用. Wang等[37]研究表明,高氨氮的湿地沉积物中铵盐与AOB正相关,这与本文结果存在一定差异; 在高氨氮区,硝酸盐与AOA和AOB存在正相关. 同时,Cao等[15]研究也表明,在珠江口岸,硝酸盐与AOA和AOB丰度同样呈正相关.

4 结论 瓯江感潮段表层沉积物中AOA来源一致,AOB在各区域间的组成显著不同. 感潮段AOA主要为sediment簇,影响AOA群落结构的主要因素为NH4+和TS; AOB分为NitrosospiraNitrosomonas簇,其中Nitrosospira占主要部分,NH4+、pH、EC、NO3-、TC和TN是影响AOB群落结构的主要因素. AOA与AOB的多样性分别受TS和EC显著影响,AOA多样性显著低于AOB多样性. 感潮段各区域AOA是表层沉积物中氨氧化过程中发挥主要功能的微生物,氨氧化微生物的丰度受EC、NH4+及NO3-的显著影响.
参考文献
[1] Zhang Y, Xie X, Jiao N, et al. Diversity and distribution of amoA-type nitrifying and nirS-type denitrifying microbial communities in the Yangtze River estuary[J]. Biogeosciences Discussions, 2014, 11 (8): 2131-2145.
[2] Chen Y Y, Zhen Y, He H, et al. Diversity, abundance, and spatial distribution of ammonia-oxidizing β-proteobacteria in sediments from Changjiang estuary and its adjacent area in East China Sea[J]. Microbial Ecology, 2014, 67 (4): 788-803.
[3] 贺梦醒, 高毅, 孙庆业. 尾矿废水对河流沉积物和稻田土壤细菌多样性的影响[J]. 环境科学, 2011, 32 (6): 1778-1785.
[4] Wu Y C, Ke X B, Hernández M, et al. Autotrophic growth of bacterial and archaeal ammonia oxidizers in freshwater sediment microcosms incubated at different temperatures[J]. Applied and Environmental Microbiology, 2013, 79 (9): 3076-3084.
[5] Ke X B, Angel R, Lu Y H, et al. Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil[J]. Environmental Microbiology, 2013, 15 (8): 2275-2292.
[6] Han P, Li M, Gu J D. Biases in community structures of ammonia/ammonium-oxidizing microorganisms caused by insufficient DNA extractions from Baijiang soil revealed by comparative analysis of coastal wetland sediment and rice paddy soil[J]. Applied Microbiology and Biotechnology, 2013, 97 (19): 8741-8756.
[7] Yao H Y, Gao Y M, Nicol G W, et al. Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils[J]. Applied and Environmental Microbiology, 2011, 77(13): 4618-4625.
[8] Park S J, Ghai R, Martín-Cuadrado A B, et al. Genomes of two new ammonia-oxidizing archaea enriched from deep marine sediments[J]. PloS One, 2014, 9 (5): e96449.
[9] Jin T, Zhang T, Ye L, et al. Diversity and quantity of ammonia-oxidizing Archaea and Bacteria in sediment of the Pearl River Estuary, China[J]. Applied Microbiology and Biotechnology, 2011, 90 (3): 1137-1145.
[10] 王晓慧, 文湘华, Craig C, 等. 城市污水处理厂活性污泥中氨氧化菌群落结构研究[J]. 环境科学, 2009, 30 (10): 3002-3006.
[11] Chen X, Zhang L M, Shen J P, et al. Abundance and community structure of ammonia-oxidizing archaea and bacteria in an acid paddy soil[J]. Biology and Fertility of Soils, 2011, 47 (3): 323-331.
[12] He J Z, Shen J P, Zhang L M, et al. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices[J]. Environmental Microbiology, 2007, 9 (9): 2364-2374.
[13] Zhang L M, Hu H W, Shen J P, et al. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils[J]. The ISME Journal, 2012, 6 (5): 1032-1045.
[14] Nicol G W, Leininger S, Schleper C, et al. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria[J]. Environmental Microbiology, 2008, 10 (11): 2966-2978.
[15] Cao H L, Hong Y G, Li M, et al. Diversity and abundance of ammonia-oxidizing prokaryotes in sediments from the coastal Pearl River estuary to the South China Sea[J]. Antonie van Leeuwenhoek, 2011, 100 (4): 545-556.
[16] Cao H L, Li M, Hong Y G, et al. Diversity and abundance of ammonia-oxidizing archaea and bacteria in polluted mangrove sediment[J]. Systematic and Applied Microbiology, 2011, 34 (7): 513-523.
[17] 贺纪正, 张丽梅. 氨氧化微生物生态学与氮循环研究进展[J]. 生态学报, 2009, 29 (1): 406-415.
[18] 孟德龙, 杨扬, 伍延正, 等. 多年蔬菜连作对土壤氨氧化微生物群落组成的影响[J]. 环境科学, 2012, 33 (4): 1331-1338.
[19] Pester M, Rattei T, Flechl S, et al. amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions[J]. Environmental Microbiology, 2012, 14 (2): 525-539.
[20] Gao J F, Luo X, Wu G X, et al. Abundance and diversity based on amoA genes of ammonia-oxidizing archaea and bacteria in ten wastewater treatment systems[J]. Applied Microbiology and Biotechnology, 2014, 98 (7): 3339-3354.
[21] Chen X P, Zhu Y G, Xia Y, et al. Ammonia-oxidizing archaea: important players in paddy rhizosphere soil?[J]. Environmental Microbiology, 2008, 10 (8): 1978-1987.
[22] 周磊榴, 祝贵兵, 王衫允, 等. 洞庭湖岸边带沉积物氨氧化古菌的丰度、多样性及对氨氧化的贡献[J]. 环境科学学报, 2013, 33 (6): 1741-1747.
[23] Boyle-Yarwood S A, Bottomley P J, Myrold, D D. Community composition of ammonia-oxidizing bacteria and archaea in soils under stands of red alder and Douglas fir in Oregon[J]. Environmental Microbiology, 2008, 10 (11): 2956-2965.
[24] Gubry-Rangin C, Nicol G W, Prosser J I. Archaea rather than bacteria control nitrification in two agricultural acidic soils[J]. FEMS Microbiology Ecology, 2010, 74 (3): 566-574.
[25] Lehtovirta-Morley L E, Stoecker K, Vilcinskas A, et al. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108 (38): 15892-15897.
[26] Pratscher J, Dumont M G, Conrad R. Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108 (10): 4170-4175.
[27] Verhamme D T, Prosser J I, Nicol G W. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms[J]. The ISME Journal, 2011, 5 (6): 1067-1071.
[28] Li X R, Xiao Y P, Ren W W, et al. Abundance and composition of ammonia-oxidizing bacteria and archaea in different types of soil in the Yangtze River estuary[J]. Journal of Zhejiang University Science B, 2012, 13 (10): 769-782.
[29] Beman J M, Francis C A. Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahía del Tóbari, Mexico[J]. Applied and Environmental Microbiology, 2006, 7 2 (12): 7767-7777.
[30] Wang X Y, Wang C, Bao L L, et al. Abundance and community structure of ammonia-oxidizing microorganisms in reservoir sediment and adjacent soils[J]. Applied Microbiology and Biotechnology, 2014, 98 (4): 1883-1892.
[31] Hu B L, Li S, Shen L D, et al. Effect of different ammonia concentrations on community succession of ammonia-oxidizing microorganisms in a simulated paddy soil column[J]. PLoS One, 2012, 7 (8): e44122.
[32] Hu B L, Li S, Wang W, et al. pH-dominated niche segregation of ammonia-oxidising microorganisms in Chinese agricultural soils[J]. FEMS Microbiology Ecology, 2014, 90 (1): 290-299.
[33] Herrmann M, Saunders A M, Schramm A. Effect of lake trophic status and rooted macrophytes on community composition and abundance of ammonia-oxidizing prokaryotes in freshwater sediments[J]. Applied and Environmental Microbiology, 2009, 7 5 (10): 3127-3136.
[34] Perevalova A A, Kolganova T V, Birkeland N K, et al. Distribution of Crenarchaeota representatives in terrestrial hot springs of Russia and Iceland[J]. Applied and Environmental Microbiology, 2008, 7 4 (24): 7620-7628.
[35] Juretschko S, Timmermann G, Schmid M, et al. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations[J]. Applied and Environmental Microbiology, 1998, 64 (8): 3042-3051.
[36] 钟丽华, 董晓, 白洁, 等. 辽河口芦苇湿地氨氧化菌群落结构与土壤盐分的关系[J]. 中国海洋大学学报(自然科学版), 2013, 43 (4): 94-99.
[37] Wang S Y, Wang Y, Feng X J, et al. Quantitative analyses of ammonia-oxidizing Archaea and bacteria in the sediments of four nitrogen-rich wetlands in China[J]. Applied Microbiology and Biotechnology, 2011, 90 (2): 779-787.