环境科学  2015, Vol. 36 Issue (7): 2554-2563   PDF    
碳纳米管-羟磷灰石对铅的吸附特性研究
张金利1,2, 李宇1,2     
1. 大连理工大学建设工程学部岩土工程研究所, 大连 116024;
2. 大连理工大学海岸和近海工程国家重点实验室, 大连 116024
摘要:采用多壁碳纳米管-羟磷灰石(MWCNT-HAP)复合材料,通过间歇试验研究了MWCNT-HAP对Pb(Ⅱ)的吸附特性. 主要探讨了固液比、pH、离子强度、反应时间、Pb(Ⅱ)的初始质量浓度及温度等因素对吸附的影响. 结果表明,固液比、pH与温度对于去除Pb(Ⅱ)的影响较大,离子强度影响较小. 当温度为20℃,固液比为0.08g ·L-1,pH0为5.5,Pb(Ⅱ)的初始质量浓度为100mg ·L-1时,吸附量为716.13mg ·g-1. 动力学试验结果表明,MWCNT-HAP吸附Pb(Ⅱ)为快速反应过程,在30 min时,吸附量可达最大吸附量的90%, 60 min即可达平衡. 伪二级动力学模型可较好地拟合动力学试验数据,可采用该模型描述MWCNT-HAP对Pb(Ⅱ)吸附的动力学过程. 热力学试验结果表明,在不同温度下的自由能变均为负值,表明MWCNT-HAP对Pb(Ⅱ)的吸附为自发反应,升温有利于反应进行. Langmuir模型拟合不同温度下的等温试验结果得到可决定系数(R2为0.9998~1.0000),可采用该模型模拟MWCNT-HAP对Pb(Ⅱ)的等温吸附过程. MWCNT-HAP去除Pb(Ⅱ)的主要机制为MWCNT-HAP表面含氧官能团与Pb2+间的络合反应、HAP的分解-沉淀、Pb2+与Ca2+离子交换等.
关键词多壁碳纳米管     羟磷灰石          吸附     反应时间     固液比     pH    
Adsorption Behaviors of Lead on Multi-Walled Carbon Nanotube-Hydroxyapatite Composites
ZHANG Jin-li1,2, LI Yu1,2    
1. Institute of Geotechnical Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China;
2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
Abstract: Multi-walled carbon nanotube-hydroxyapatite composites (MWCNT-HAP) were employed as the sorbent to study the sorption characteristic of Pb(Ⅱ) using batch experiments. Effects of dosage of adsorbent, pH, ionic strength, contact time, initial concentration of lead and temperature were investigated. The results indicated that the removal of lead to MWCNT-HAP composites was strongly dependent on dosage of adsorbent, pH, temperature, and independent of ionic strength. The maximum adsorption capacity of lead was about 716.13mg ·g-1 at 20℃, with a solid/liquid ratio of 0.08g ·L-1, pH0=5.5 and an initial concentration of 100mg ·L-1. The adsorption of Pb(Ⅱ) on MWCNT-HAP composites was a fast process and could reach the equilibrium within 60 minutes. Ninety percent of the maximum adsorption capacity could be reached in 30 minutes. The kinetic data were fitted to pseudo-second-order kinetic model reasonably well. The kinetic sorption of Pb(Ⅱ) on MWCNT-HAP was well described by pseudo-second-order kinetic model. The negative free energy calculated from the temperature dependent sorption isotherms suggested that the sorption of Pb(Ⅱ) on MWCNT-HAP composites was a spontaneous process, and high temperature favored the adsorption process. The higher correlation coefficient values(R2=0.9998-1.0000) of Langmuir isotherm model at different temperatures suggested that Langmuir model could be used to simulate the sorption of Pb(Ⅱ) on MWCNT-HAP. The adsorption mechanism mainly involves surface complexation between the lead ions and the surface oxygen-containing functional groups of the MWCNT-HAP, dissolution of HAP and precipitation of pyromorphite [Pb10(PO4)6(OH)2], ion exchange reaction between Pb2+ and Ca2+ of hydroxyapatite.
Key words: multi-walled carbon nanotubes     hydroxyapatite     lead     adsorption     contact time     solid/liquid ratio     pH    

受工业废水大量排放的影响,重金属污染问题已经引起了社会的广泛关注. 众所周知,重金属对生物、 土壤、 水体等产生的负面影响,严重威胁人类的生存. 铅广泛用于工业生产(蓄电池、 染料、 印刷等行业),其在环境中存量较大,人一旦过量摄入可引起贫血、 肾损伤、 流产、 儿童智力低下、 神经系统紊乱等疾病[1]. 通常清除工业废水中重金属方法包括沉淀[2]、 离子交换[3]、 凝结[4]、 膜过滤[5]等. 上述方法成本高、 工艺复杂,往往导致处理效果较差. 吸附法若采用效率较高的吸附剂便可达到较好处理效果,近年来受到广泛关注. 研究表明,天然材料如黏土矿物[6, 7, 8, 9, 10](高岭土、 膨润土、 黄土、 淤泥、 泥炭土)、 植物茎叶果核[1, 11, 12]、 海藻[13,14](褐藻、 绿藻)、 菌类[15]、 骨炭[16,17]等吸附剂对不同重金属具有一定吸附能力,吸附特性受多种条件控制.

碳纳米管(carbon nanotubes,CNTs)具有比表面积大、 表面碳原子活性强等独特性质[18, 19, 20],有理由相信CNTs用于水体净化的应用前景非常广阔. CNTs分为单壁与多壁(multi-walled carbon nanotubes,MWCNTs)两类. 未经活性处理的MWCNTs作为吸附剂使用时,其吸附性较差,一般对MWCNTs氧化处理,形成含氧官能团,如—COOH、 —OH、 —CO等[21, 22, 23, 24],氧化后的MWCNTs对有机污染物[25,26]、 金属离子[27, 28, 29, 30]等具有较高的吸附能力.

羟磷灰石[Ca10(PO4)6(OH)2,hydroxyapatite: HAP]是骨骼的主要无机成分,具有良好的阳离子交换能力[31],对铅[32]、 钴[33]、 铜[34]等具有较好吸附效果. 碳纳米管-羟磷灰石(MWCNT-HAP)复合材料作为生物活性材料,应用于组织工程支架材料研究较多. Hahn等[35]通过气浮沉积技术制备碳纳米管-羟磷灰石复合涂层,复合涂层显著提高了力学性质与生物学性能. Chen等[36]合成壳聚糖-碳纳米管与羟磷灰石复合材料,研究其力学特性,通过细胞形态学分析,表明复合材料生物相容性较好. Emohare等[37]合成碳纳米管-羟磷灰石复合材料,进行骨原细胞培养,通过细胞代谢、 细胞增殖和分化与乳酸脱氢酶的释放等试验研究,表明在一定的改性条件下,复合材料可用于骨组织工程. 碳纳米管-羟磷灰石复合材料作为环境功能材料用于吸附水溶液中重金属离子的研究较少. Liu等[38]通过合成的MWCNT-HAP复合材料试验研究了其对Co(Ⅱ)的吸附特性,结果表明其对Co(Ⅱ)具有较高的去除率.

本研究主要开展以下工作:①对MWCNTs进行酸化与净化,得到纯净的含亲水的含氧官能团的MWCNTs; ②合成MWCNT-HAP复合材料,并对复合材料特性进行分析; ③通过间歇试验研究MWCNT-HAP对Pb(Ⅱ)的吸附与动力学特性,考虑固液比、 pH、 离子强度、 反应时间、 Pb(Ⅱ)的初始质量浓度及温度等因素的影响,探讨MWCNT-HAP对Pb(Ⅱ)的吸附机制.

1 材料与方法 1.1 试验材料

试验用多壁碳纳米管(S-MWCNT-1020)购于深圳纳米港公司,由化学蒸气沉积法制备. 平均孔径9 nm; 灰分9.9%; 比表面积153.44 m2 ·g-1; 孔隙体积0.3454 cm3 ·g-1; 主要元素含量C:89.9%,H:0.1%,N:0%,O:0.1%,电泳1.34 μm ·cm ·V ·s-1[39].

试验用试剂Pb(NO3)2、 CaCl2、 Na2HPO4 ·12H2O均为分析纯. 将1.598 g的Pb(NO3)2溶解于1L蒸馏水配成Pb(Ⅱ)质量浓度为1000 mg ·L-1的母液,试验用Pb(Ⅱ)溶液由蒸馏水稀释母液得到.

1.2 MWCNT-HAP复合材料合成

将10 g的MWCNTs置于马弗炉中,在500℃下加热1 h以除去无定形碳,待冷却到室温后,取6 g MWCNTs与200 mL浓硝酸(质量分数65%)混合,将混合液置入超声波仪(KQ2200,昆山市超声仪器有限公司)在频率40 kHz超声处理20 min,在恒温加热磁力搅拌器(DF-101S,巩义市予华仪器有限责任公司)内恒温80℃回流3 h,使其表面产生亲水官能团. 将得到的混合物置入聚丙烯离心管,通过离心机(CT15RT,上海天美生化仪器设备工程有限公司) 在10000 r ·min-1下离心,将分离的固体部分用蒸馏水洗至溶液pH值为6.0,然后在恒温80℃下烘干24 h,冷却到室温待用.

参照文献[38]的试验方法,取5 g氧化处理的MWCNTs,加入500 mL 0.05mol ·L-1氯化钙溶液中(溶液pH为6.2),连续搅拌1 h,向混合物中加入500 mL 0.05mol ·L-1磷酸氢二钠溶液(溶液pH为9.3),继续搅拌1 h. 混合物经离心、 多次清洗,在60℃下烘干30 h,待冷却至室温,储存在干燥器中备用.

1.3 MWCNT-HAP复合材料特性分析

采用Fourier红外光谱仪(Nicolet 6700,Thermo Fisher Scientific)对MWCNT-HAP进行红外光谱分析,KBr压片法制样,光谱分辨率为0.09 cm-1,扫描32次,扫描范围525~4000 cm-1. 采用X-射线衍射仪(X Pert PROoMPD,PANalytical B.V.)对样品进行分析,测试条件:CuKα射线(λ=0.15406 nm),以连续扫描方式扫描,扫描速度为2 () ·min-1,扫描范围2θ为0°~80°.

1.4 间歇试验

将盛有试样并编号的锥形瓶置于恒温振荡器中(SHA-C,国华电器有限公司),在120r ·min-1下,恒温振荡12 h. 反应后的溶液通过离心机在10000 r ·min-1下离心10 min,取上清液采用原子吸收分光光度计(AA6000,上海天美生化仪器设备工程有限公司)测定Pb(Ⅱ)的质量浓度. 试验中pH由pH计(Starter2C,上海奥豪斯仪器有限公司)测定. 吸附量qt、 去除率R按下式计算:

式中,qt为t时刻的吸附量(mg ·g-1); ρ0、 ρt分别为Pb(Ⅱ)的初始质量浓度(mg ·L-1)与t时刻质量浓度; V为溶液的体积(L); m为吸附材料的质量(g); ρe为平衡时Pb(Ⅱ)的质量浓度(mg ·L-1).

2 结果与分析 2.1 MWCNT-HAP复合材料特性分析

MWCNT-HAP的FTIR如图 1所示. 563 cm-1、 573 cm-1等峰来自PO43-基团的弯曲振动,PO43-基团的对称与非对称伸缩振动产生了982 cm-1和1046 cm-1、 1120 cm-1特征峰[33, 40]. 其他明显振动峰876 cm-1、 1645 cm-1分别来自HPO42-、 —CO的伸缩振动[28,41]. 羧基(—COOH、 —COH)上的—OH伸缩振动产生了3152~3260 cm-1的特征峰,2896 cm-1振动峰来自于—CH的伸缩振动[42]. 3471~3532 cm-1来自于OH-的伸缩振动,638 cm-1特征峰来自于O—H的弯曲变形[43]. 由此可见,HAP已经附着在MWCNT上,生成MWCNT-HAP复合材料.

图1 MWCNT-HAP复合材料的红外光谱图 Fig.1 FTIR spectrum of the MWCNT-HAP
2.2 固液比对吸附的影响

在20℃、Pb(Ⅱ)初始质量浓度为100mg·L-1、试验中不调节pH(Ph0=5.5)条件下,变动固液比(0.02 0.06g ·L-1),研究固液比对Pb(Ⅱ)的吸附量与去除率的影响,试验结果如图2所示.

图2 固液比对MWCNT-HAP去除Pb(Ⅱ)的影响 Fig.2 Effects of soild/liquid ratio on Pb(Ⅱ) removal to MWCNT-HAP

图 2可见,当固液比变化时,MWCNT-HAP对Pb(Ⅱ)吸附可分为三段,固液比在0.02~0.06g ·L-1范围内,吸附量随固液比增加而增大,表明MWCNT-HAP可提供较多吸附点位,对Pb(Ⅱ)的吸附量相应增加[44]; 固液比在0.06~0.10g ·L-1时,吸附量基本保持不变,由于吸附导致Pb(Ⅱ)质量浓度下降,从而导致吸附能力下降. 当固液比大于0.10g ·L-1时,因MWCNT-HAP质量增加,溶液中Pb(Ⅱ)质量浓度不断降低,同时还受可吸附点位未充分暴露的共同影响[45],故吸附量下降. MWCNT-HAP对Pb(Ⅱ)的去除率随着固液比增大而增加,当固液比为0.16g ·L-1时,去除率可达95.3%,由此可见,MWCNT-HAP复合材料对液体中的Pb(Ⅱ)具有较高的清除能力.

2.3 pH对去除的影响

pH对吸附的主要影响包括MWCNTs表面电荷的性状与离子化程度及种类. pH还控制铅在液相中存在价态,pH小于6.0时,Pb(Ⅱ)主要以Pb2+存在[46]. 试样初始pH0为5.5,为防止产生沉淀,试验中控制pH小于6.0. 在20℃,Pb(Ⅱ)的初始质量浓度为100mg ·L-1,固液比为0.10g ·L-1下,通过变动pH0,探讨pH对Pb(Ⅱ)去除的影响,试验结果如图 3所示.

图3 pH对MWCNT-HAP吸附Pb(Ⅱ)的影响 Fig.3 Effects of pH on Pb(Ⅱ) sorption to MWCNT-HAP

在pH<2.5的强酸条件下,MWCNT-HAP中HAP的溶解度最大[47][式(3)],HAP表面PO- CaOH 质子化[48][见式(4)和式(5)],POH 与 CaOH2+ 使得HAP表面带正电荷,且H+与Pb2+竞争表面吸附位点[49],导致Pb(Ⅱ)的吸附量较低. pH>2.5时,MWCNT-HAP表面上的羟基、 羧基等官能团离子化,聚集负电荷[50],H+的竞争能力下降,此时各官能团对Pb(Ⅱ)吸附以化学吸附与静电吸附为主. 同时,MWCNT-HAP中的HAP分解与溶液中的Pb2+所反应生成磷氯铅矿Pb10(PO4)6(OH)2而沉淀 [式(6)]. 在上述机制共同作用下,MWCNT-HAP对Pb(Ⅱ)吸附量显著增加. 随着pH增大,HAP溶解度降低[47]. pH由3.5增大到5.5时,溶液中的Pb2+与HAP中的Ca2+发生离子交换[51][见式(7)],吸附量基本保持不变.

2.4 离子强度对吸附的影响

在Pb(Ⅱ)初始质量浓度为100mg ·L-1,固液比为0.10g ·L-1,试验中不调节pH(pH0=5.5)下,分别加入不同浓度的NaCl和KCl溶液(0~0.5mol ·L-1),分析离子强度对于MWCNT-HAP吸附Pb(Ⅱ)的影响. 试验结果如图 4所示. 从中可见,尽管两种溶液的离子强度变化较大,不同离子强度对于Pb(Ⅱ)去除率影响较小,因此,在分析MWCNT-HAP对Pb(Ⅱ)吸附特性时,可忽略离子强度的影响.

图4 离子强度对MWCNT-HAP吸附Pb(Ⅱ)的影响 Fig.4 Effects of ionic strength on Pb(Ⅱ) sorption to MWCNT-HAP
2.5 吸附动力学研究

在Pb(Ⅱ)的初始质量浓度分别为100、 150、 200mg ·L-1,固液比为0.10g ·L-1,温度为20℃,试验中不调节pH(pH0=5.5)下,分析MWCNT-HAP对Pb(Ⅱ)的吸附动力学特性,试验结果如图 5所示. 由图 5可见,在3种不同初始质量浓度下,MWCNT-HAP对Pb(Ⅱ)的吸附为快速反应过程,30 min时,吸附量可达最大吸附量的90%,在60 min基本达到平衡. 吸附的初始阶段,固液间质量浓度差较大,MWCNT-HAP表面吸附点位多,故反应速率较快. 随着反应时间增长,表面吸附位点减少,内部扩散速率较慢,反应速率随之降低.

图5 反应时间对MWCNT-HAP吸附Pb(Ⅱ)的影响 Fig.5 Effects of contact time on Pb(Ⅱ) sorption to MWCNT-HAP

MWCNT-HAP对Pb(Ⅱ)的吸附动力学采用伪二级动力学模型,其表达式为:

积分形式为:

式中,k2为伪二级动力学吸附速率常数[g ·(mg ·min)-1],qe为平衡时吸附量(mg ·g-1).

h为初始吸附速率[g ·(mg ·min)-1],当t趋近于0时,h表达式为:

图 6给出了伪二级动力学模型拟合曲线,表 1 给出h、 k2与R2值. 由h的计算结果可知,初始吸附速率较快,这与试验结果一致. 不同初始质量浓度下的伪二级动力学模型拟合的可决定系数R2均接近1,表明采用伪二级动力学模型可较好地描述MWCNT-HAP对Pb(Ⅱ)的吸附动力学特性.

表1 不同初始质量浓度下伪二级动力学模型参数 Table 1 Kinetic parameters of Pb(Ⅱ) sorption on MWCNT-HAP for pseudo-second-order kinetic model at different initial concentrations

图6 伪二级动力学模型对试验数据的拟合 Fig.6 Fitting curves of kinetic data with the pseudo-second-order kinetic model
2.6 等温吸附特性

在固液比为0.04g ·L-1,温度分别为20、 30、 40℃,试验中不调节pH(pH0=5.5)条件下,变动Pb(Ⅱ)的初始质量浓度(60~180mg ·L-1),分析MWCNT-HAP对Pb(Ⅱ)的等温吸附特性,试验结果如图 7所示.

图7 不同温度时Pb(Ⅱ)在MWCNT-HAP上的等温吸附曲线 Fig.7 Adsorption isotherms of Pb(Ⅱ) on MWCNT-HAP at different temperatures

图 7可见,吸附量随着初始质量浓度的增大 而增加,不同温度下试验结果曲线趋势基本一致.吸附量随温度升高而增加,表明升温有利于吸附,MWCNT-HAP对Pb(Ⅱ)的吸附是吸热过程.

为描述MWCNT-HAP对Pb(Ⅱ)的等温吸附过程,这里采用如下两种模型.(1)Langmuir等温吸附模型,可表示为:

式中,Q为单层饱和吸附量(mg ·g-1),b为常数(L ·mg-1).

无量纲分离因子,它的大小能够在一定程度上反映吸附过程是否有利. 当0<RL<1时,表示有利吸附; RL>1时,为不利吸附; RL=1时,为可逆吸附; RL=0时,为非可逆吸附[52]. 因b>0,RL<1,表明MWCNT-HAP对Pb(Ⅱ)的吸附为有利吸附. (2)Freundlich等温吸附模型,可表示为:

式中,KFn是模型常数,分别与吸附容量和吸附强度有关.

分别采用上述两种等温吸附模型对MWCNT-HAP吸附Pb(Ⅱ)的试验数据进行拟合,表 2给出相应的模型参数,图 8图 9给出相应的拟合曲线. 从中可见,Langmuir模型的可决定系数R2较高(大于0.99),拟合曲线与试验结果吻合较好,而Freundlich模型的可决定系数较低,因此,采用Langmuir模型更适合描述MWCNT-HAP对Pb(Ⅱ)的等温吸附过程.

表2 Langmuir与Freundlich模型参数 Table 2 Isothermal parameters for Langmuir model and Freundlich model

图8 Langmuir等温吸附模型拟合曲线 Fig.8 Fitting curves of the Langmuir isotherm model

图9 Freundlich等温吸附模型拟合曲线 Fig.9 Fitting curves of the Freundlich isotherm model

Freundlich模型常数KF在20、 30、 40℃时,分别为246.18、 255.07、 403.92mg ·g-1,表明升温有利于MWCNT-HAP吸附Pb(Ⅱ),这与Langmuir模型描述一致. 不同温度的n均小于10,说明MWCNT-HAP对Pb(Ⅱ)有较高的亲和力和吸附能力[53].

2.7 吸附热力学特性

为分析温度变化对MWCNT-HAP吸附Pb(Ⅱ)的影响,通过计算自由能变(ΔG)、 焓变(ΔH),熵变(ΔS)等参数,进而确定吸附反应的热力学效应,相应的计算式如下:

式中,R是普适气体常量[8.314 J ·(K ·mol)-1],T是绝对温度(K),KD表示被吸附物质在固相与液相上的分配系数(mL ·g-1),合并式(13)与式(14)得:

对式(15)线性拟合得到ΔH和ΔS,计算结果见表 3. 计算结果表明ΔG值均为负值,说明吸附反应为自发,温度升高有利于反应进行.

表3 Pb(Ⅱ)在MWCNT-HAP上吸附的热力学参数 Table 3 Thermodynamic parameters for Pb(Ⅱ) sorption on MWCNT-HAP
3 MWCNT-HAP复合材料对Pb(Ⅱ)的吸附机制

图 10给出MWCNT-HAP与负载Pb(Ⅱ)的MWCNT-HAP的XRD图. 在2θ为26.15°、 29.38°、 34.19°、 41.59°等平面上的衍射峰为HAP的特征峰,表明MWCNT上已经合成了HAP[54]. 负载Pb(Ⅱ)的MWCNT-HAP出现磷氯铅矿的衍射峰[55],表明吸附反应后有磷氯铅矿生成[见式(3)、 式(6)]. 吸附平衡后,Ca2+浓度与Pb(Ⅱ)吸附量具有如图 11所示的关系,MWCNT-HAP对Pb(Ⅱ)的吸附部分表现为HAP中的Ca2+与Pb2+发生了离子交换[56].

图10 MWCNT与负载Pb(Ⅱ)MWCNT的XRD图 Fig.10 X-ray diffraction spectra of MWCNTs and Pb(Ⅱ) loaded MWCNT-HAP

图 11可知,吸附平衡时溶液中pHe均降低(pH0=5.5),表明Pb2+与H+发生络合反应[见式(16)、 式(17)]. 氧化处理后的MWCNTs表面产生含氧官能团(—COOH、 —OH等)可与Pb2+发生络合反应而产生H+,如图 12所示,两者叠加导致pHe降低[57, 58]. 综上说明,表面络合反应参与Pb(Ⅱ)吸附[59, 60]. 式(16)、 式(17)与图 12说明pH较低时,不利于MWCNT-HAP吸附Pb(Ⅱ),这与试验结果一致.

图11 平衡时吸附Pb2+浓度与Ca2+释放浓度、 pHe间的关系 Fig.11 Relationship between the concentration of sorbed Pb2+ and the amount of released Ca2+, final pH in solution at equilibrium

图12 氧化的MWCNT与Pb2+反应原理 Fig.12 Schematic diagram for sorption of Pb2+onto oxidized MWCNTs

综上所述,MWCNT-HAP对Pb(Ⅱ)的吸附机制主要为HAP分解-沉淀,Pb2+与Ca2+置换反应及表面络合反应.

4 MWCNT-HAP与其它吸附剂比较

通过前面的试验结果可知,复合材料MWCNT-HAP对Pb(Ⅱ)具有较强的吸附能力,为便于比较,这里采用骨炭、 酸化MWCNTs、 膨润土、 松子壳、 黏土、 MWCNTs等不同类型吸附剂,在20℃、 固液比0.10g ·L-1、 试验中不调节pH(pH0=5.5)下,得到不同类型吸附剂对Pb(Ⅱ)的等温吸附曲线,如图 13所示. 试验结果表明,MWCNT-HAP对Pb(Ⅱ)的吸附能力远高于其它吸附剂. 通过进一步完善MWCNT-HAP合成方法,优化试验条件,有理由相信作为高效吸附剂MWCNT-HAP可用于含铅废水工业治理.

图13 不同吸附剂对Pb(Ⅱ)的吸附等温吸附曲线比较 Fig.13 Adsorption isotherms of Pb(Ⅱ) on different adsorbents
5 吸附与解吸试验

为分析MWCNT-HAP的稳定性与可再生性,在20℃,Pb(Ⅱ)的初始质量浓度为200mg ·L-1,固液比为0.20g ·L-1,初始pH0为5.5下,首先进行吸附试验确定吸附量,试验方法如前所述. 将吸附完成后的MWCNT-HAP经固液分离后的固体部分加入浓度为1mol ·L-1的HNO3进行解吸试验. 试验方法为将吸附完成后的MWCNT-HAP置入锥形瓶,加入5 mL浓度为1mol ·L-1的HNO3恒温振荡12 h,静置3 h后离心,取上清液测定Pb(Ⅱ)的质量浓度,试验共进行3组,其中1组为空白试验,2组为平行试验. 试验结果如表 4所示. 其中m1为吸附完成后MWCNT-HAP的质量,m2为解吸完成后MWCNT-HAP的质量. 由表 4可知,吸附Pb(Ⅱ)的MWCNT-HAP,经1mol ·L-1的HNO3处理后,Pb(Ⅱ)的解吸率约为94%,表明MWCNT-HAP复合材料经简单酸处理即可重复利用,其再生性较高. MWCNT-HAP经吸附与解吸试验等系列过程,出现一定质量损失,同时空白样亦出现基本相同的质量损失,说明较小质量损失主要发生在试验操作过程中,表明MWCNT-HAP复合材料在试验过程中稳定性较高.

表4 吸附与解吸试验数据 Table 4 Data of sorption/desorption
6 结论

(1) MWCNT-HAP对Pb(Ⅱ)吸附的主要机制包括HAP分解-沉淀、 Pb2+与Ca2+离子交换、 MWCNT-HAP表面含氧官能团与Pb2+的络合反应.

(2) 在pH 3.5~5.5范围内,MWCNT-HAP对Pb(Ⅱ)去除率较高.

(3) MWCNT-HAP吸附Pb(Ⅱ)为快速反应,30 min可达最大吸附量的90%,60 min即可达到吸附平衡. 伪二级动力学模型可用于描述MWCNT-HAP吸附Pb(Ⅱ)的动力学过程.

(4) MWCNT-HAP对Pb(Ⅱ)的吸附为吸热过程,高温有利于吸附,Langmuir模型更适合模拟MWCNT-HAP对Pb(Ⅱ)的等温吸附过程.

(5) 离子强度对于MWCNT-HAP去除Pb(Ⅱ)的特性影响较小.

(6) MWCNT-HAP对Pb(Ⅱ)的吸附能力远高于骨炭、 酸化MWCNTs、 膨润土、 松子壳、 黏土、 MWCNTs等吸附剂.

参考文献
[1] Pehlivan E, Altun T, Cetin S, et al. Lead sorption by waste biomass of hazelnut and almond shell [J]. Journal of Hazardous Materials, 2009, 167 (1-3): 1203-1208.
[2] Navarro R R, Wada S, Tatsumi K. Heavy metal precipitation by polycation-polyanion complex of PEI and its phosphonomethylated derivative [J]. Journal of Hazardous Materials, 2005, 123 (1-3): 203-209.
[3] Juang R S, Lin S H, Wang T Y. Removal of metal ions from the complexed solutions in fixed bed using a strong-acid ion exchange resin [J]. Chemosphere, 2003, 53 (10): 1221-1228.
[4] El Samrani A G, Lartiges B S, Villiéras F. Chemical coagulation of combined sewer overflow: Heavy metal removal and treatment optimization [J]. Water Research, 2008, 42 (4): 951-960.
[5] Bessbousse H, Rhlalou T, Verchère J F, et al. Removal of heavy metal ions from aqueous solutions by filtration with a novel complexing membrane containing poly (ethyleneimine) in a poly (vinyl alcohol) matrix [J]. Journal of Membrane Science, 2008, 307 (2): 249-259.
[6] Sari A, Tuzen M. Cd (Ⅱ) adsorption from aqueous solution by raw and modified kaolinite [J]. Applied Clay Science, 2014, 88-89: 63-72.
[7] Malamis S, Katsou E. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms [J]. Journal of hazardous materials, 2013, 252-253: 428-461.
[8] Khan S, Wu Y G, Zhang X Y, et al. Influence of dissolved organic matter from corn straw on Zn andCusorption to Chinese loess [J]. Toxicological & Environmental Chemistry, 2013, 95 (8): 1318-1327.
[9] Sassi M, Bestani B, Said A H, et al. Removal of heavy metal ions from aqueous solutions by a local dairy sludge as a biosorbant [J]. Desalination, 2010, 262 (1-3): 243-250.
[10] Balasubramanian R, Perumal S V, Vijayaraghavan K. Equilibrium isotherm studies for the multicomponent adsorption of lead, zinc, and cadmium onto Indonesian peat [J]. Industrial & Engineering Chemistry Research, 2009, 48 (4): 2093-2099.
[11] Lasheen M R, Ammar N S, Ibrahim H S. Adsorption/desorption of Cd (Ⅱ), Cu (Ⅱ) and Pb (Ⅱ) using chemically modified orange peel: Equilibrium and kinetic studies [J]. Solid State Sciences, 2012, 14 (2): 202-210.
[12] Gong X B. Kinetic and Equilibrium Studies on the Adsorption of Pb (Ⅱ), Cd (Ⅱ) and Cu (Ⅱ) by Rape Straw [J]. Adsorption Science & Technology, 2013, 31 (6): 559-572.
[13] He J S, Chen J P. A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools [J]. Bioresource Technology, 2014, 160: 67-78.
[14] Yalçın S. The mechanism of heavy metal biosorption on green marine macroalga Enteromorpha linza [J]. Clean-Soil, Air, Water, 2014, 42 (3): 251-259.
[15] Kumar R, Sharma A K, Singh P, et al. Potential of some fungal and bacterial species in bioremediation of heavy metals [J]. Journal of Nuclear Physics, Material Sciences, Radiation and Applications,2014, 1 (2):213-223.
[16] Amiri M J, Abedi-Koupai J, Eslamian S S, et al. Modeling Pb (Ⅱ) adsorption from aqueous solution by ostrich bone ash using adaptive neural-based fuzzy inference system [J]. Journal of Environmental Science and Health, Part A, 2013, 48 (5): 543-558.
[17] Cha J, Cui M, Jang M, et al. Kinetic and mechanism studies of the adsorption of lead onto waste cow bone powder (WCBP) surfaces [J]. Environmental Geochemistry and Health, 2011, 33 (1): 81-89.
[18] Cai Y Q, Jiang G B, Liu J F, et al. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol [J]. Analytical Chemistry, 2003, 75 (10): 2517-2521.
[19] Li Q L, Yuan D X, Lin Q M. Evaluation of multi-walled carbon nanotubes as an adsorbent for trapping volatile organic compounds from environmental samples [J]. Journal of Chromatography A, 2004, 1026 (1-2): 283-288.
[20] Fugetsu B, Satoh S, Lles A, et al. Encapsulation of multi-walled carbon nanotubes (MWCNTs) in Ba2+-alginate to form coated micro-beads and their application to the pre-concentration/elimination of dibenzo-p-dioxin, dibenzofuran, and biphenyl from contaminated water [J]. Analyst, 2004, 129 (7): 565-566.
[21] Pyrzynska K, Stafiej A. Sorption behavior of Cu(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ) onto carbon nanotubes [J]. Solvent Extraction and Ion Exchange, 2012, 30 (1): 41-53.
[22] Liu X Y, Ji Y S, Zhang Y H, et al. Oxidized multiwalled carbon nanotubes as a novel solid-phase microextraction fiber for determination of phenols in aqueous samples [J]. Journal of Chromatography A, 2007, 1165 (1-2): 10-17.
[23] Katsumata H, Matsumoto T, Kaneco S, et al. Preconcentration of diazinon using multiwalled carbon nanotubes as solid-phase extraction adsorbents [J]. Microchemical Journal, 2008, 88 (1): 82-86.
[24] Suárez B, Santos B, Simonet B M, et al. Solid-phase extraction-capillary electrophoresis-mass spectrometry for the determination of tetracyclines residues in surface water by using carbon nanotubes as sorbent material [J]. Journal of Chromatography A, 2007, 1175 (1): 127-132.
[25] Gauden P A, Terzyk A P, Rychlicki G, et al. Thermodynamic properties of benzene adsorbed in activated carbons and multi-walled carbon nanotubes [J]. Chemical Physics Letters, 2006, 421 (4-6): 409-414.
[26] Yang K, Zhu L Z, Xing B S. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials [J]. Environmental Science & Technology, 2006, 40 (6): 1855-1861.
[27] Lu C, Chiu H. Chemical modification of multiwalled carbon nanotubes for sorption of Zn2+ from aqueous solution [J]. Chemical Engineering Journal, 2008, 139 (3): 462-468.
[28] Xu D, Tan X L, Chen C L, et al. Removal of Pb (Ⅱ) from aqueous solution by oxidized multiwalled carbon nanotubes [J]. Journal of Hazardous Materials, 2008, 154 (1-3): 407-416.
[29] Chen C L, Wang X K. Adsorption of Ni (Ⅱ) from aqueous solution using oxidized multiwall carbon nanotubes [J]. Industrial & Engineering Chemistry Research, 2006, 45 (26): 9144-9149.
[30] Sheng G D, Li J X, Shao D D, et al. Adsorption of copper (Ⅱ) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids [J]. Journal of Hazardous Materials, 2010, 178 (1): 333-340
[31] Smičiklas I, Onjia A, Marković J, et al.Comparison of hydroxyapatite sorption properties towards cadmium,lead,zinc and strontium ions [J]. Current Research in Advanced Materials and Processes, Materials Science Forum, 2005, 494: 405-410.
[32] Sandrine B, Ange N, Didier B A, et al. Removal of aqueous lead ions by hydroxyapatites: equilibria and kinetic processes [J]. Journal of Hazardous Materials, 2007, 139 (3): 443-446.
[33] Dimović S, Smičiklas I, Plećaš I, et al. Comparative study of differently treated animal bones for Co2+ removal [J]. Journal of Hazardous Materials, 2009, 164 (1): 279-287.
[34] Kizilkaya B, Tekinay A A, Dilgin Y. Adsorption and removal of Cu(Ⅱ) ions from aqueous solution using pretreated fish bones [J]. Desalination, 2010, 264 (1-2): 37-47.
[35] Hahn B D, Lee J M, Park D S, et al. Mechanical and in vitro biological performances of hydroxyapatite-carbon nanotube composite coatings deposited on Ti by aerosol deposition [J]. Acta biomaterialia, 2009, 5 (8): 3205-3214.
[36] Chen L, Hu J X, Shen X Y, et al. Synthesis and characterization of chitosan-multiwalled carbon nanotubes/hydroxyapatite nanocomposites for bone tissue engineering [J]. Journal of Materials Science: Materials in Medicine, 2013, 24 (8): 1843-1851.
[37] Emohare O, Rushton N. Self-assembled apatite on multiwalled carbon nanotubes substrates support osteogenic cell function [J]. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2014, 102 (3): 543-550.
[38] Liu Z J, Chen L, Zhang Z C, et al. Synthesis of multi-walled carbon nanotube-hydroxyapatite composites and its application in the sorption of Co(Ⅱ) from aqueous solutions [J]. Journal of Molecular Liquids, 2013, 179: 46-53.
[39] Tian X L, Zhou S, Zhang Z Y, et al. Metal impurities dominate the sorption of a commercially available carbon nanotube for Pb (Ⅱ) from water [J]. Environmental Science & Technology, 2010, 44 (21): 8144-8149.
[40] Wei W, Sun R, Jin Z, et al. Hydroxyapatite-gelatin nanocomposite as a novel adsorbent for nitrobenzene removal from aqueous solution [J]. Applied Surface Science, 2014, 292: 1020-1029.
[41] Lazarević S, Janković -Častvan I, Tanasković D, et al. Sorption of Pb2+, Cd2+, and Sr2+ ions on calcium hydroxyapatite powder obtained by the hydrothermal method [J]. Journal of Environmental Engineering, 2008, 134 (8): 683-688.
[42] Venkata Ramana D K, Yu J S, Seshaiah K. Silver nanoparticles deposited multiwalled carbon nanotubes for removal of Cu (Ⅱ) and Cd (Ⅱ) from water: Surface, kinetic, equilibrium, and thermal adsorption properties [J]. Chemical Engineering Journal, 2013, 223: 806-815.
[43] Wei W, Zhang X, Cui J, et al. Interaction between low molecular weight organic acids and hydroxyapatite with different degrees of crystallinity [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 392 (1): 67-75.
[44] Prabhakaran S K, Vijayaraghavan K, Balasubramanian R. Removal of Cr (VI) ions by spent tea and coffee dusts: reduction to Cr (Ⅲ) and biosorption [J]. Industrial & Engineering Chemistry Research, 2009, 48 (4): 2113-2117.
[45] Nouri L, Ghodbane I, Hamdaoui O, et al. Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran [J]. Journal of hazardous materials, 2007, 149 (1): 115-125.
[46] 张金利, 张林林. 重金属Pb(Ⅱ)在黏土上吸附特性研究[J]. 岩土工程学报, 2012, 34 (9): 1584-1589.
[47] 胥焕岩, 彭明生, 刘羽. pH值对羟基磷灰石除镉行为的影响[J]. 矿物岩石地球化学通报, 2004, 23 (4): 305-309.
[48] Liao D X, Zheng W, Li X M, et al. Removal of lead (Ⅱ) from aqueous solutions using carbonate hydroxyapatite extracted from eggshell waste [J]. Journal of Hazardous Materials, 2010, 177 (1-3): 126-130.
[49] Yan Y B, Wang Y P, Sun X Y, et al. Optimizing production of hydroxyapatite from alkaline residue for removal of Pb2+ from wastewater [J]. Applied Surface Science, 2014, 317: 946-954.
[50] Sitko R, Zawisza B, Malicka E. Modification of carbon nanotubes for preconcentration, separation and determination of trace-metal ions [J]. TrAC Trends in Analytical Chemistry, 2012, 37: 22-31.
[51] Jang S H, Jeong Y G, Min B G, et al. Preparation and lead ion removal property of hydroxyapatite/polyacrylamide composite hydrogels [J]. Journal of Hazardous Materials, 2008, 159 (2-3): 294-299.
[52] Chen H, Zhao J, Dai G L, et al. Adsorption characteristics of Pb (Ⅱ) from aqueous solution onto a natural biosorbent, fallen Cinnamomum camphora leaves [J]. Desalination, 2010, 262 (1-3): 174-182.
[53] Oubagaranadin J U K, Murthy Z V P. Adsorption of divalent lead on a montmorillonite-illite type of clay [J]. Industrial & Engineering Chemistry Research, 2009, 48 (23): 10627-10636.
[54] Huang Y, Chen L, Wang H L. Removal of Co(Ⅱ) from aqueous solution by using hydroxyapatite [J]. Journal of Radioanalytical and Nuclear Chemistry, 2012, 291 (3): 777-785.
[55] Arnich N, Lanhers M C, Laurensot F, et al. In vitro and in vivo studies of lead immobilization by synthetic hydroxyapatite [J]. Environmental Pollution, 2003, 124 (1): 139-149.
[56] Corami A, Mignardi S, Ferrini V. Cadmium removal from single-and multi-metal (Cd+Pb+Zn+Cu) solutions by sorption on hydroxyapatite [J]. Journal of Colloid and Interface Science, 2008, 317 (2): 402-408.
[57] Lu C, Liu C T, Rao G P. Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon [J]. Journal of Hazardous Materials, 2008, 151 (1): 239-246.
[58] Lin D H, Tian X L, Li T T, et al. Surface-bound humic acid increased Pb2+ sorption on carbon nanotubes [J]. Environmental Pollution, 2012, 167: 138-147.
[59] Zhu R H, Yu R B, Yao J X, et al. Removal of Cd2+from aqueous solutions by hydroxyapatite [J]. Catalysis Today, 2008, 139 (1-2): 94-99.
[60] Smičiklas I, Dimović S, Plećaš I, et al. Removal of Co2+ from aqueous solutions by hydroxyapatite [J]. Water Research, 2006, 40 (12): 2267-2274.