环境科学  2015, Vol. 36 Issue (2): 516-522   PDF    
UV协同ClO2去除三氯生及其降解产物的研究
李玉瑛1,2, 何文龙1,2, 李青松2 , 金伟伟2,3, 陈国元2, 李国新2    
1. 五邑大学化学与环境工程学院, 江门 529000;
2. 厦门理工学院水资源环境研究所, 厦门 361024;
3. 浙江工业大学建筑工程学院, 杭州 310014
摘要:采用UV/ClO2工艺对三氯生(TCS)的去除进行了研究,考察了初始pH、ClO2投加量、TCS初始浓度、腐殖酸(HA)在UV/ClO2联用工艺中对TCS降解的影响. 研究表明,UV/ClO2工艺可以有效去除TCS且具有协同作用,光强为6.5 μW·cm-2、ClO2投加量为0.5 mg·L-1和TCS浓度为300 μg·L-1时,单独UV和ClO2在1 min内对TCS的去除分别为5.23%和84.93%,UV/ClO2联用工艺TCS在1 min内去除可达到99.13%. 实验范围内(pH 6~9)随着pH的增大TCS去除率从99.4%升到99.63%; 增大ClO2投加量可以提高TCS的去除,ClO2投加量从0.5~1.5 mg·L-1时TCS去除率由98.1%提高到99.89%; TCS初始浓度与去除率呈负相关,初始浓度从100~500 μg·L-1时TCS去除率由99.98%下降到94.39%; 低浓度的腐殖酸有利于TCS的去除,高浓度的腐殖酸则相反. GC/MS对TCS的UV、ClO2和UV/ClO2的降解产物分析表明,TCS的主要降解产物包括2,4-二氯苯酚(2,4-DCP)、2,7-二氯代二苯并-对-二噁英(2,7-DCDD)等.
关键词UV/ClO2     三氯生     去除     GC/MS     降解产物    
Removal of Triclosan with the Method of UV/ClO2 and Its Degradation Products
LI Yu-ying1,2, HE Wen-long1,2, LI Qing-song2 , JIN Wei-wei2,3, CHEN Guo-yuan2, LI Guo-xin2    
1. College of Chemistry and Environmental Engineering, Wuyi University, Jiangmen 529000, China;
2. Institute of Water Resources and Environment, Xiamen University of Technology, Xiamen 361024, China;
3. College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
Abstract: The UV/ClO2 process for triclosan (TCS) removal was studied. The influences of several factors such as the initial pH, dose of ClO2, initial concentration of TCS and humic acid(HA) on TCS degradation in the UV/ClO2 combined process were discussed. The results showed that the UV/ClO2 process could effectively remove TCS and had a synergistic effect. When the light intensity was 6.5 μW·cm-2, the dose of ClO2 was 0.5mg·L-1 and the concentration of TCS was 300 μg·L-1, when UV and ClO2 were applied alone, the TCS removal rates within 1 min were only 5.23% and 84.93% respectively. The removal rate reached up to 99.13% after 1 min degradation using the UV/ClO2 combined process. In test conditions (pH 6-9), the removal rate increased from 99.4% to 99.63% with the increase of pH. Increasing dose of ClO2 could promote TCS removal. When the dose of ClO2 was 0.5-1.5 mg·L-1, the removal rate was increased from 98.1% to 99.89%. The initial concentration of TCS was negatively correlated with the removal rate. When the initial concentration increased from 100-500 μg·L-1, the removal rate of TCS was decreased from 99.98% to 94.39%. Low concentration of humic acid was beneficial to the removal of TCS, and high concentration of it had the opposite effect. Degradation products of TCS were investigated by GC/MS. Degradation of TCS by the processes of UV,ClO2 and UV/ClO2 also indicated that the main degradation products of the TCS were 2, 4-dichlorophenol (2,4-DCP), 2,7-dichlorodibenzo-p-dioxin(2,7-DCDD), etc.
Key words: UV/ClO2     TCS     removal     GC/MS     degradation product    

三氯生(triclosan,TCS)是目前国际流行的广谱高效抗菌剂[1,2]. 广泛应用于个人护理产品、 日用消费类产品、 医疗用品以及家居清洁用品等,特别在各类口腔护理方面应用更为普遍[3,4]. 近年来在地表水中检出三氯生的报道越来越多[5,6]. 水中某些形态的TCS不易被分解,而且其半衰期也比较长[7,8]. 研究表明光解过程中TCS会生成苯醌、 对苯二酚、 2,7/2,8-DCDD和致癌物二 英的前体物2,4-二氯苯酚等产物[9, 10, 11, 12]. 因此,三氯生对水质的健康风险引起了人们的普遍关注[13,14].

UV/ClO2是一种新型的饮用水处理工艺,但是UV/ClO2去除有机物鲜有报道[15, 16, 17]. UV/ClO2工艺利用UV光照产生的羟基自由基( ·OH)[18,19]与ClO2共同去除水中有机物,并且ClO2可以减少副产物的生成[20].

本文利用UV/ClO2工艺对饮用水中TCS的降解进行研究,考察了不同实验因素对其去除的影响,并对其降解产物进行鉴定分析,有助于为UV/ClO2工艺在实际水治理工程设计中的应用提供基础实验数据. 1 材料与方法 1.1 实验装置及方法

实验在多功能光化学反应器中进行,该反应器结构见图 1所示. 反应器高780 mm,直径250 mm,有效容积6 L. 反应器中紫外灯功率20 W,主波长254 nm. 紫外灯管外为全石英玻璃光源保护冷阱,外径60 mm.

1.反应容器; 2.专用平板式磁力搅拌器; 3.全石英玻璃光源保护冷阱; 4.紫外灯管; 5.进样口; 6.取样口; 7.冷却水进水口; 8.冷却水出水口 图 1 多功能光化学反应器示意 Fig. 1 Schematic diagram of multifunctional photochemical reactor

实验在光化学反应器中进行,首先加入2 L不同浓度TCS溶液,然后开启循环冷却水,再启动磁力搅拌器,最后开启紫外灯,在加入ClO2后开始计时,实验过程中依据设定时间段在取样口取1 mL样品,用适量1%的Na2S2O3使反应终止,然后进行测定.

降解产物鉴定中分别取1 L经过UV、 ClO2和UV/ClO2降解TCS的溶液,经过HC-C18小柱富集、 洗脱和萃取,用所得萃取物在GC/MS上分析其降解产物. 用紫外线强度计在离紫外灯6 cm处测紫外灯的光强. 1.2 化学试剂

三氯生(99.0%,德国Dr),稳定二氧化氯溶液及其激活溶剂(Dr),五水合硫代硫酸钠、 氢氧化钠、 硫酸和腐殖酸均为分析纯,甲醇和乙腈是色谱纯,二氧化氯试剂(Glycin试剂和DPD free Chlorine试剂包,美国哈希),HC-C18小柱(Anpel). 1.3 实验仪器及条件

LC-20A高效液相色谱仪(日本岛津); 磁力搅拌器(德国IKA); pH计(Eutech); DR2800分光光度计(美国哈希公司); GC-MS(日本岛津); UV-2550(日本岛津); Millipore纯水仪(美国millipore公司); 固液萃取装置(美国Suplco公司),紫外线强度计(台湾泰纳).

液相色谱:色谱柱为InertsilODS-SP柱(4.6×250 mm ID,5 μm); 流动相采用乙腈 ∶水=70% ∶30%的溶液进行等度洗脱,流速0.8 mL ·min-1,柱温35℃,SPD-M20A检测器(波长范围190~800 nm),检测波长为230nm,进样量10 μL.

气相色谱-质谱联用:色谱柱为RXI-5ms(30 m,0.32 mm ID,0.25 μm df),进样口温度280℃,进样方式为不分流,程序升温:初始温度为60℃保持3 min,以5℃ ·min-1的速度升温至150℃,恒温5 min,再以10℃ ·min-1的速度升温至280℃,恒温3 min. 质谱为EI电离源,载气为氦气(1.90 mL ·min-1),全扫描(m/z为50~600)检测,离子源温度为250℃. 2 结果与讨论 2.1 UV、 ClO2和UV/ClO2去除TCS

在光强为6.5 μW ·cm-2、 ClO2浓度为0.5 mg ·L-1、 TCS浓度为300 μg ·L-1的条件下,考察了UV、 ClO2和UV/ClO2联用3种工艺对TCS的去除,见图 2.

图 2 UV、 ClO2和UV/ClO2去除TCS效果的比较 Fig. 2 Comparison of removal effect of TCS by UV,ClO2and UV/ClO2

图 2可知,单独UV无法对TCS快速去除,1 min只能达到5.23%,60 min才能达到91.33%; 单独ClO2对TCS可以很好地去除,1 min就达到84.93%; 而UV/ClO2对TCS的降解作用最好,反应1 min就能达到99.13%. 在1 min内UV/ClO2去除大于UV和ClO2去除之和,UV/ClO2工艺对TCS的去除具有协同作用.

UV对TCS的去除主要是UV照射产生的羟基自由基( ·OH)参与反应. ClO2对TCS的去除主要是ClO2的氧化去除. UV/ClO2工艺中ClO2在水中发生以下反应:


由式(1)、 (2)和(3)可以看出,溶液中ClO2可以生成活性氯Cl2和HClO,活性氯Cl2和HClO经UV辐照可以生成 ·OH[21,22]. 因而,UV/ClO2体系中不仅有UV辐照作用,还有ClO2的直接氧化,此外还有ClO2产生的活性氯经UV照射产生的 ·OH氧化作用,三者的共同作用增加了溶液中的 ·OH浓度,促进了TCS的去除,加快了反应的进行,所以UV/ClO2工艺具有协同作用,可以更好地去除有机物. 2.2 pH对TCS去除的影响

在光强为6.5 μW ·cm-2、 ClO2浓度为0.5 mg ·L-1、 TCS浓度为400 μg ·L-1的条件下,用硫酸和氢氧化钠调节pH值,考察pH对TCS的去除的影响,结果见图 3.

图 3 初始pH对TCS去除效率的影响 Fig. 3 Effect of initial pH on the removal efficiency of TCS

可以看出,溶液的初始pH对TCS的降解影响不大,在pH 6、 7、 8和9时,1 min去除率分别达99.4%、 99.43%、 99.48%和99.63%. 研究表明TCS在碱性环境下更容易降解.

原因一可能是当溶液是弱碱时TCS有一部分以分子形式存在(TCS的pKa=7.9)[13],随着酸性的增强,以分子形式存在的TCS就越多,分子形式不易降解; 而在碱性环境中,TCS是以负离子形式存在的[12,23],更容易降解; 原因二可能是在碱性条件下反应中的ClO2易发生歧化反应或被 ·OH消耗,ClO2不稳定,氧化性会有所降低,但在碱性条件下UV照射更容易产生 ·OH,而且氢氧根离子(OH-)是 ·OH的前驱体[24],而在酸性条件下反应中的ClO2与UV产生的 ·OH并不反应或反应很少,ClO2比较稳定,可以表现出较强的氧化性,所以溶液由酸到碱对TCS的去除效率会由快逐渐变慢. 2.3 ClO2对TCS去除的影响

在光强为6.5 μW ·cm-2、 TCS浓度为400 μg ·L-1的条件下,考察了ClO2投加量对TCS去除的影响. 结果见图 4.

图 4 ClO2投加量对TCS去除效率的影响 Fig. 4 Effect of ClO2 dose on the removal efficiency of TCS

图 4可知,TCS的去除效率随着ClO2投加量的增加而增大,ClO2的投加量分别为0.50、 0.75、 1.00、 1.25和1.50 mg ·L-1时,1 min后TCS的去除分别达到98.1%、 98.72%、 99.35%、 99.62%和99.89%. 这可能是因为在UV照射下,随着ClO2浓度的增加,生成更多促进 ·OH产生的物质,从而产生更多 ·OH促进TCS的去除; 而提高ClO2浓度能增加强氧化性自由基浓度[25]; 另一原因是随着反应的进行ClO2及 ·OH逐渐消耗,导致反应液中ClO2和 ·OH的浓度逐渐降低,使其氧化能力也逐渐降低; 而且反应中TCS浓度一定,随着ClO2浓度的增加,在很短时间内TCS被迅速反应. 2.4 TCS初始浓度对TCS去除的影响

在光强为6.5 μW ·cm-2,ClO2浓度为0.5 mg ·L-1的条件下,考察TCS初始浓度对其去除的影响. 结果见图 5.

图 5 不同TCS初始浓度对TCS的去除效率的影响 Fig. 5 Effect of different TCS initial concentration on the removal efficiency of TCS

图 5可知,TCS初始浓度为100、 200和300 μg ·L-1时,反应16 s时TCS去除率达到96.16%、 95.59%和95.35%,而TCS浓度达到400 μg ·L-1时,则在反应30 s时才能达到相同的去除率,较高浓度的TCS需要更长时间才能达到相同的去除率. 这可能是因为溶液中TCS浓度高时,反应生成的中间产物,并且消耗掉一定量的 ·OH和ClO2,影响了TCS的去除. 另一部分原因是UV照射时间及ClO2投加量不变时,TCS的初始浓度增加,单位TCS所受到的ClO2及 ·OH的几率降低,因此TCS的去除效率明显降低. 2.5 腐殖酸对TCS去除的影响

腐殖酸(HA)是广泛存在于水体的最重要的天然吸光物质之一,光化学性质较为活泼,吸收光子后会引发一系列的自由基反应,产生活性氧自由基,从而影响共存体系中有机污染物等物质的迁移转化规律. 在光强为6.5 μW ·cm-2、 ClO2浓度为0.5 mg ·L-1、 TCS浓度为400 μg ·L-1的条件下,向标准溶液中投加腐殖酸,测得其吸光度分别为0.054、 0.098、 0.179、 0.223和0.286,考察了腐殖酸对TCS去除效率的影响,结果见图 6,单独ClO2和腐殖酸/ClO2对TCS去除效率对比见图 7.

图 6 腐殖酸对TCS的去除效率的影响 Fig. 6 Effect of humic acid on the removal efficiency of TCS


图 7 单独ClO2和腐殖酸/ClO2对TCS去除效率的影响 Fig. 7 Comparison of humic acid/ClO2 and ClO2 on the removal efficiency of TCS

图 6可知,当腐殖酸在溶液中含量分别为1、 3、 5和7 mg ·L-1时,1 min去除率分别为99.72%、 99.6%、 99.4%和99.22%. 而且对于不同浓度的腐殖酸如1 mg ·L-1时在8 s的去除率可达99.41%,而在3 mg ·L-1和5 mg ·L-1时达到相同的去除率则分别需要16 s和60 s. 由图 7可知低浓度的腐殖酸对TCS的去除有促进作用; 高浓度的腐殖酸会和TCS产生竞争,从而影响TCS的去除效率. 虽然紫外照射下腐殖酸可以增加 ·OH产生[18],这将促进降解反应的进行,但腐殖酸会增加水中的色度影响透光率,从而抑制反应的进行,并且抑制作用可能占主导地位,腐殖酸的本身降解也会消耗一部分 ·OH. 2.6 TCS的降解产物

通过GC/MS对经过固液萃取的UV、 ClO2和UV/ClO2这3种工艺降解TCS的溶液进行分析检测,鉴定识别TCS的降解产物. UV、 ClO2和UV/ClO2降解TCS所得GC/MS色谱图分别见图 8图 9图 10.

图 8 UV照射TCS所得GC/MS色谱图 Fig. 8 GC/MS chromatograms obtained by UV irradiation of TCS


图 9 ClO2氧化TCS所得GC/MS色谱图 Fig. 9 GC/MS chromatogram obtained by oxidation of TCS with ClO2


图 10 UV/ClO2降解TCS所得GC/MS色谱图 Fig. 10 GC/MS chromatogram obtained by degradation of TCS with UV/ClO2

图 8可以看出,10.9 min为2,4-DCP出峰时间,31.78 min为2,7-DCDD出峰时间,33.89 min为TCS出峰时间. 由谱库分析可知,UV降解TCS所得的降解产物为2,4-DCP和2,7-DCDD.

图 9可知,10.9 min为2,4-DCP出峰时间,33.89 min为TCS出峰时间. 由谱库分析可知,经ClO2降解TCS所得的降解产物为2,4-DCP,并未检测出2,7-DCDD.

图 10可知,10.9 min为2,4-DCP出峰时间,33.89 min为TCS出峰时间. 由谱库分析可知,经过UV/ClO2去除TCS所得主要降解产物为2,4-DCP,并未检测出2,7-DCDD,可能原因是ClO2是一种强氧化剂,与TCS反应迅速,在UV/ClO2降解TCS中占主导地位. UV/ClO2去除TCS降低了单独UV降解TCS生成致癌物质2,7-DCDD的概率. 3 结论

(1) 研究了UV、 ClO2、 UV/ClO2这3种工艺对TCS去除,去除效果为UV/ClO2>ClO2>UV,在1min内UV/ClO2对TCS去除可达99.13%.

(2)实验条件内TCS的去除随pH增大而提高; ClO2投加量的增加促进TCS的去除; TCS的去除随着TCS初始浓度的增大而降低; 低浓度的腐殖酸有利于TCS的去除,高浓度的腐殖酸则反之.

(3) 对TCS的降解产物进行分析,其降解产物为2,4-DCP和2,7-DCDD,并且UV/ClO2去除TCS降低了单独UV降解TCS生成致癌物质2,7-DCDD的概率.

参考文献
[1] Buth J M, Ross M R, McNeill K, et al. Reprint of: Removal and formation of chlorinated triclosan derivatives in wastewater treatment plants using chlorine and UV disinfection[J]. Chemosphere, 2011, 85 (2): 284-289.
[2] Chen Z F, Ying G G, Liu Y S, et al. Triclosan as a surrogate for household biocides: An investigation into biocides in aquatic environments of a highly urbanized region[J]. Water Research, 2014, 58: 269-279.
[3] Chen X J, Richard J, Liu Y L, et al. Ozonation products of triclosan in advanced wastewater treatment[J]. Water Research, 2012, 46 (7): 2247-2256.
[4] Bedoux G, Roig B, Thomas O, et al. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment[J]. Environmental Science and Pollution Research International, 2012, 19 (4): 1044-1065.
[5] Gautam P, Carsella J S, Kinney C A. Presence and transport of the antimicrobials triclocarban and triclosan in a wastewater-dominated stream and freshwater environment[J]. Water Research, 2014, 48: 247-156.
[6] Chen F, Ying G G, Ma Y B, et al. Field dissipation and risk assessment of typical personal care products TCC, TCS, AHTN and HHCB in biosolid-amended soils[J]. Science of the Total Environment, 2014, 470-471: 1078-1086.
[7] Rai S K, Ali S, Fernandes Milena B F, et al. Bioconcentration of triclosan and methyl-triclosan in marine mussels (Mytilus galloprovincialis) under laboratory conditions and inmetropolitan waters of Gulf St Vincent, South Australia[J]. Marine Pollution Bulletin, 2013, 74 (1): 66-72.
[8] Veetil P G P, Nadaraja A V, Bhasi A, et al. Degradation of triclosan under aerobic, anoxic, and anaerobic conditions[J]. Applied Biochemistry and Biotechnology, 2012, 167 (6): 1603-1612.
[9] Chen Z L, Cao G Q, Song Q J. Photo-polymerization of triclosan in aqueous solution induced by ultraviolet radiation[J]. Environmental Chemistry Letters, 2008, 8 (1): 33-37.
[10] Yu J C, Kwong T Y, Luo Q, et al. Photocatalytic oxidation of triclosan[J]. Chemosphere, 2006, 65 (3): 390-399.
[11] Latch D E, Packer J L, Arnold W A, et al. Photochemical conversion of triclosan to 2, 8-dichlorodibenzo-p-dioxin in aqueous solution[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 158 (1): 63-66.
[12] Lores M, Llompart M, Sanchez-Prado L, et al. Confirmation of the formation of dichlorodibenzo-p-dioxin in the photodegradation of triclosan by photo-SPME[J]. Analytical and Bioanalytical Chemistry, 2005, 381 (6): 1294-1298.
[13] Gao Y P, Ji Y M, Li G Y, et al. Mechanism, kinetics and toxicity assessment of OH-initiated transformation of triclosan in aquatic environments[J]. Water Research, 2014, 49: 360-370.
[14] Wang X N, Liu Z T, Wang W H, et al. Assessment of toxic effects of triclosan on the terrestrial snail (Achatina fulica)[J]. Chemosphere, 2014, 108: 225-230.
[15] Rand J L, Hofmann R, Alam M Z B, et al. A field study evaluation for mitigating biofouling with chlorine dioxide or chlorine integrated with UV disinfection[J]. Water Research, 2007, 41 (9): 1939-1948.
[16] 范少文. ClO2/UV催化氧化酚醛废水的研究[D]. 郑州: 郑州大学, 2012. 1-53.
[17] Sichel C, Garcia C, Andre K. Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants[J]. Water Research, 2011, 45 (19): 6371-6380.
[18] Martínez-Zapata M, Aristizábal C, Peñuela G. Photodegradation of the endocrine-disrupting chemicals 4n-nonylphenol and triclosan by simulated solar UV irradiation in aqueous solutions with Fe(Ⅲ) and in the absence/presence of humic acids[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 251: 41-49.
[19] Vallejo M, San Román M F, Ortiz I, et al. Overview of the PCDD/Fs degradation potential and formation risk in the application of advanced oxidation processes (AOPs) to wastewater treatment[J]. Chemosphere, 2014, 118: 44-56.
[20] Yang X, Guo W H, Wontae L. Formation of disinfection byproducts upon chlorine dioxide preoxidation followed by chlorination or chloramination of natural organic matter[J]. Chemosphere, 2013, 91 (11): 1477-1485.
[21] Wang D, Bolton J R, Hofmann R. Medium pressure UV combined with chlorine advanced oxidation for trichloroethylene destruction in a model water[J]. Water Research, 2012, 46 (15): 4677-4686.
[22] Chan P Y, El-Din M G, Bolton J R. A solar-driven UV/Chlorine advanced oxidation process[J]. Water Research, 2012, 46 (17): 5672-5682.
[23] Ren Y Z, Franke M, Anschuetz F, et al. Sonoelectrochemical degradation of triclosan in water[J]. Ultrasonics Sonochemistry, 2014, 21 (6): 2020-2025.
[24] Zhao J H. Research on UV/TiO2 photocatalytic oxidation of organic matter in drinking water and its influencing factors[J]. Procedia Environmental Sciences, 2012, 12: 445-452.
[25] 赵德明, 张谭, 张建庭, 等. 微波辅助二氧化氯氧化降解苯酚[J]. 化工学报, 2011, 62( 7): 2020-2025.