环境科学  2014, Vol. 35 Issue (5): 1623-1632   PDF    
长三角地区秸秆燃烧排放因子与颗粒物成分谱研究
唐喜斌1,2, 黄成2,3, 楼晟荣2,3, 乔利平2,3, 王红丽2,3, 周敏2,3, 陈明华2, 陈长虹2,3, 王倩2,3, 李贵玲1,2, 李莉2,3, 黄海英2, 张钢锋2    
1. 华东理工大学资源与环境工程学院,上海 200237;
2. 上海市环境科学研究院国家环境保护城市大气复合污染成因与防治重点实验室(筹),上海 200233;
3. 上海市大气颗粒物污染防治重点实验室,上海 200433
摘要:为获取长三角地区秸秆燃烧污染物排放因子及其颗粒物成分谱,利用自行设计开发的开放式燃烧源排放测试系统,选取小麦、水稻、油菜、豆秸和薪柴等5类典型作物秸秆,分别采用露天焚烧和炉灶燃烧2种燃烧方式,实测其气态污染物和颗粒物排放特征. 结果表明,露天燃烧各类秸秆的CO、NOx和PM2.5平均排放因子约为28.7、1.2和2.65g·kg-1,由于炉灶氧含量相对较低,燃烧不充分,其污染物排放因子总体高于露天燃烧,分别为81.9、2.1和8.5g·kg-1. 各类秸秆中,油菜的排放水平相对较高. 含碳组分(OC和EC)是生物质秸秆燃烧产生PM2.5的主要组成,在露天燃烧中OC和EC的质量分数分别占(38.92±13.93)%和(5.66±1.54)%;炉灶燃烧中OC和EC分别为(26.37±10.14)%和(18.97±10.76)%. Cl-、K+等水溶性离子也有较大贡献,在露天燃烧中分别为(13.27±6.82)%和(12.41±3.02)%;在炉灶燃烧中分别为(16.25±9.34)%和(13.62±7.91)%. 小麦、水稻、油菜和豆秸等作物秸秆露天燃烧排放颗粒物的K+/OC值分别为0.30、0.52、0.49和0.15,这些特征值可用于判断长三角区域空气质量受秸秆燃烧排放影响的程度,为大气污染来源解析提供直接的判断依据.
关键词秸秆燃烧     PM2.5     气态污染物     排放因子     成分谱    
Emission Factors and PM Chemical Composition Study of Biomass Burning in the Yangtze River Delta Region
TANG Xi-bin1,2, HUANG Cheng2,3, LOU Sheng-rong2,3, QIAO Li-ping2,3, WANG Hong-li2,3, ZHOU Min2,3, CHEN Ming-hua2, CHEN Chang-hong2,3, WANG Qian2,3, LI Gui-ling1,2, LI Li2,3, HUANG Hai-ying2, ZHANG Gang-feng2    
1. School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China;
2. State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China;
3. Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Shanghai 200433, China
Abstract: The emission characteristics of five typical crops, including wheat straw, rice straw, oil rape straw, soybean straw and fuel wood, were investigated to explore the gas and particulates emission of typical biomass burning in Yangzi-River-Delta area. The straws were tested both by burning in stove and by burning in the farm with a self-developed measurement system as open burning sources. Both gas and fine particle pollutants were measured in this study as well as the chemical composition of fine particles. The results showed that the average emission factors of CO, NOx and PM2.5 in open farm burning were 28.7 g·kg-1, 1.2 g·kg-1 and 2.65 g·kg-1, respectively. Due to insufficient burning in the low oxygen level environment, the emission factors of stove burning were higher than those of open farm burning, which were 81.9 g·kg-1, 2.1 g·kg-1 and 8.5 g·kg-1, respectively. Oil rape straw had the highest emission factors in all tested straws samples. Carbonaceous matter, including organic carbon(OC) and element carbon(EC), was the foremost component of PM2.5 from biomass burning. The average mass fractions of OC and EC were (38.92±13.93)% and (5.66±1.54)% by open farm burning and (26.37±10.14)% and (18.97±10.76)% by stove burning. Water soluble ions such as Cl- and K+ had a large contribution. The average mass fractions of Cl- and K+ were (13.27±6.82)% and (12.41±3.02)% by open farm burning, and were (16.25±9.34)% and (13.62±7.91)% by stove burning. The K+/OC values of particles from wheat straw, rice straw, oil rape straw and soybean straw by open farm burning were 0.30, 0.52, 0.49 and 0.15, respectively, which can be used to evaluate the influence on the regional air quality in YRD area from biomass burning and provide direct evidence for source apportionment.
Key words: straw burning     PM2.5     air pollutants     emission factor     source profile    

生物质燃烧是大气中气态污染物和颗粒物的一个重要来源,对全球大气环境、 气候变化及生态系统具有重要影响[8, 11, 12],生物质燃烧排放的CO、 NOx、 非甲烷碳烃(NMHC)参与大气光化学反应,是对流层臭氧生成的重要前体物[6,7]. 生物质燃烧排放的颗粒物中包含大量的有机碳(OC)和元素碳(EC)及无机水溶性离子等组分[4],这些组分直接或间接影响太阳辐射从而改变大气的辐射平衡[30]、 大气光化学性质,引起大气灰霾现象[13].

我国是一个农业大国,薪柴和农作物秸秆作为家庭炊事和取暖用的燃料被广泛使用,收割后部分秸秆在田间直接焚烧. 近年来,由于生物质燃烧造成的区域大气污染事件屡见不鲜[32]. Duan等[14]通过研究大气颗粒物中OC与水溶性K+的比值发现,周边地区生物质燃烧对北京区域灰霾污染有重要影响. 朱佳雷等[15] 利用长三角秸秆焚烧大气污染物排放清单,通过区域大气环境模拟系统(RegAEMS)对一次重霾污染天气事件进行模拟,结果显示秸秆焚烧可导致区域大气中PM10、 CO浓度上升30%以上,黑碳和有机物对消光的贡献明显增强; 苏中地区、 外省秸秆焚烧对此次重霾污染的贡献分别达到32.4%、 33.3%. 尹聪等[16]利用卫星遥感的火点和云覆盖信息,结合气团后向轨迹分析,探讨了秸秆焚烧对南京空气质量的影响,结果发现在逆温及较大湿度的条件下,秸秆焚烧促进了灰霾的形成,并造成了严重的空气污染. 伍德侠等[17]在合肥郊区3个站点连续实时监测碳黑气溶胶,研究其在秸秆焚烧的变化特征和来源,结果表明秸秆燃烧期间大气中碳黑气溶胶平均浓度是正常时期的1.73倍,秸秆焚烧是碳黑气溶胶的重要来源. Ding等[18]结合大气成分和气象的综合观测及数值模拟等方法给出了生物质燃烧和化石燃料燃烧排放对局地气温和降水造成影响的直接证据.

目前我国有关生物质秸秆燃烧排放的研究仍然较少. 祝斌等[19]采用自制的模拟装置和稀释通道,测定了中国粮食主产区玉米、 小麦和水稻在不同燃烧状态下PM2.5的排放因子. 发现与其它类别的生物质燃烧相比,秸秆燃烧的排放因子较高,且闷火燃烧是明火燃烧排放的2.4~11.5倍. Li等[20]在田野模拟了小麦和玉米秸秆露天焚烧,并研究了气态污染物和颗粒物的排放特征,发现颗粒质量呈单峰分布,峰值在0.26~0.38 μm范围,位于积聚模态. Cao等[21]通过自制的燃烧塔模拟了水稻、 小麦、 玉米、 高粱在农村日常炊事的燃烧过程,并计算了气态污染物和颗粒物及水溶性无机离子的排放因子. 上述研究为我国建立生物质秸秆燃烧排放的数据库提供了宝贵的基础数据. 然而,这些研究大部分在实验室条件下进行,且集中在华北地区,而针对长三角地区典型作物秸秆燃烧排放的研究并不多见. 由于供氧量和环境差异,测量环境和现场实际情况可能存在一定的差异,测量结果不尽相同[20]. 为此,本研究在上海选取了长三角地区典型的小麦、 水稻、 油菜、 大豆和薪柴等秸秆,开展田间焚烧和传统炉灶燃烧两种燃烧条件下的气态污染物和颗粒物、 碳组分、 无机离子和元素等成分谱测试,旨在为建立秸秆燃烧源精细化排放清单以及来源解析提供数据支撑.

1 材料与方法 1.1 开放式燃烧源排放测试系统 1.1.1 露天秸秆焚烧

图 1所示为本研究搭建的开放式燃烧源排放测试系统. 该系统由烟罩、 烟道、 引风机、 稀释系统、 气态污染物在线分析系统、 四通道颗粒物采样器等部分组成. 为了减少对样品的污染,烟罩与烟道均由不锈钢制成. 烟道尾端安装引风机将烟气引出,烟道内气体设计流速为4 m ·s-1. 稀释系统采用专为固定源排放测试设计的颗粒物二级稀释器(FPS-4000,芬兰Dekati公司),一级稀释为热稀释,利用加热后的零空气对烟气进行初步稀释,使样品气的湿度降低; 二级稀释为冷稀释,利用室温下的零空气将烟气稀释,使其温度接近环境温度. 测试中采用的稀释倍数在14~35倍之间. 从稀释系统出来的CO和NOx等气态组分采用Ecotech公司生产CO监测仪(EC9810B)与NOx监测仪(EC9841B)测量. 部分烟气接入四通道颗粒物采样器,4个采样通道均装配PM2.5切割器,其中2个通道用特氟龙滤膜采样,采集到的颗粒物样品用于称重以及无机离子和元素分析; 另2个通道用石英膜采样,用于有机碳(OC)和元素碳(EC)分析.

图 1 开放式燃烧源排放测试系统示意 Fig.1 Schematic diagram of measurement system for open fire sources

样品采用德国Sartorius公司生产的CP225D电子天平称重,精度为0.01 mg. 颗粒物中OC、 EC采用美国DRI-2001A型OC/EC测定仪热光透射法(TOT)[26]测定. 采样前先将石英膜放置在450℃马弗炉中烧烤4 h,以去除含碳组分. 颗粒物中的水溶性无机离子采用美国Dionex公司生产的ICS2000型离子色谱检测,元素组分采用法国JOBIN-YVON公司生产的ULTIMA型电感耦合等离子体直读光谱技术(ICP-AES)测定.

1.1.2 家用炉灶燃烧

家庭炉灶测试系统的搭建与野外秸秆燃烧过程一致,测试过程中将S型皮托管和采样切割头直接插入炉灶烟囱中进行测试和采样,参见图 1.

1.2 测试过程

野外秸秆焚烧测试过程中,将一定量的秸秆放置在距烟罩下方0.5 m的地面上引燃. 样品的采集从秸秆点燃后产生烟气开始,直至秸秆熄灭不再冒烟后截至,整个燃烧过程以明火燃烧为主. 实验过程中记录开始与结束时间、 秸秆用量,每种秸秆重复2次平行实验.

炉灶燃烧测试在上海郊区农户家炉灶中开展,为使实验有一定的代表性,采取国际通用的“煮水法”进行实验[27],每种秸秆重复2次平行实验. 由于样品量不足,薪柴、 大豆秸秆仅有一次测量结果

1.3 生物质秸秆选取

选取当地农村普遍使用并经过自然风干后的薪柴以及小麦、 水稻、 油菜、 大豆这4种农作物秸秆作为测试材料. 表 1所示为各类秸秆的工业分析结果. 从中可见,各类秸秆含水率在10.9%~12.5%之间; 灰分在1.67%~12.97%之间,其中,水稻和小麦的灰分显著高于其他秸秆; 各类秸秆低位热值在13.21~16.25 MJ ·kg-1之间,薪柴、 油菜和大豆的热值略高于水稻和小麦.

表 1 生物质秸秆的工业分析与元素分析 Table 1 Analysis of biofuel compositions
1.4 排放因子的计算方法

根据Andreae等[28]对排放因子的定义,同时参考Zhang等[29]的计算方法,气态污染物排放因子的计算方法如下:

式中,Eij表示i类秸秆j类气态污染物的排放因子(g ·kg-1); mdry表示秸秆燃烧干基量(kg); t0和tf分别表示开始时间和结束时间; As表示烟道横截面积(m2); 表示烟道气体平均流速(m ·s-1); φj表示稀释通道j气态污染物的体积分数(10-9); DR表示稀释比; Mj表示j类气态污染物的摩尔质量(g ·mol-1).

依据Zhang等[29]的计算方法,PM2.5的排放因子计算公式如下:

式中,Ei表示i类秸秆的PM2.5或其组分的排放因子(g ·kg-1); t表示采样时长(s); mdry表示秸秆燃烧干基量(kg); As表示烟道横截面积(m2), 表示烟道内烟气的平均流速(m ·s-1),mi为特氟龙滤膜捕集到的物种净重(g); Vi表示i类秸秆颗粒物采样体积(m3); DR表示稀释比.

2 结果与讨论 2.1 生物质秸秆露天和炉灶燃烧的气态污染物排放因子

表 2为本研究测得的生物质秸秆露天和炉灶燃烧的气态污染物排放因子. 从中可见,露天燃烧的各类秸秆CO和NOx平均排放因子分别在20.6~34.3 g ·kg-1和1.08~1.42 g ·kg-1之间,NO/NO2的比值为3.2~4.7. 炉灶燃烧的各类秸秆CO和NOx平均排放因子分别在31.4~133.5 g ·kg-1和1.65~2.43 g ·kg-1之间,NO/NO2的比值为8.2~26.4. 测试发现,秸秆在炉灶燃烧中气态污染物排放明显高于露天燃烧,同类秸秆在炉灶中燃烧产生的CO和NOx排放因子分别是露天燃烧排放的2.5~3倍和1.5~2倍. 与秸秆露天燃烧相比,炉灶的燃烧空间相对较小,供气量有限,空燃比较低,燃料燃烧不充分,致使CO排放显著较高,NO/NO2比值较高进一步说明炉灶中氧含量相对较低,使NO向NO2的转化速率相对较慢. 同时,炉灶的燃烧温度显著高于露天焚烧,有利于NOx的生成,因此,炉灶燃烧的气态污染物排放总体高于露天焚烧.

从不同的秸秆类型来看,油菜秸秆的CO排放因子普遍较高,露天和炉灶燃烧分别为(34.3±0.2)g ·kg-1和(133.5±45.0)g ·kg-1. 实测发现,油菜秸秆燃烧过程中通常伴有浓密的白烟,已有研究发现这些白烟为秸秆热解产生的可燃性挥发性物[28]. 水稻露天燃烧的NOx排放因子较高,约为(1.42±0.46)g ·kg-1,薪柴炉灶燃烧的NOx排放因子最高,达到2.43 g ·kg-1. NOx的生产机制相对复杂,与燃料中的氮含量和燃烧温度均密切相关[30,31],而燃烧温度在较大程度上会受到热值的影响. 各类秸秆中,除油菜秸秆因氮含量和热值偏低,NOx排放因子显著较低,其他秸秆的NOx排放因子基本相近.

表 2 生物质燃料露天和炉灶燃烧气态污染物排放因子 1)/g ·kg-1

Table 2 Emission factors of gaseous pollutants from field and stove burning of crop straw/g ·kg-1

2.2 气态污染物排放因子与其它研究的比较

表 3为本研究气态污染物实测排放因子与其它文献的比较. 从中可见,本研究测得的各类秸秆燃烧的气态污染物排放因子与其他研究成果基本相近. 其中,露天燃烧的NO、 NOx排放因子与Zhang等[32]的研究结果相似,CO排放因子与刘丽华等[30]、 Sahai等[33]研究结果相近,但是与Zhang等[32]相比偏低,这可能与测试过程的燃烧条件等因素有关. 炉灶燃烧排放的CO和NOx排放因子总体在Cao等[21]的研究结果范围内. 总体来看,虽然实验方法有所差异,但本研究实验结果与相关文献具有可比性,反映了秸秆燃烧气态污染物排放的基本特征.

表 3 本研究生物质秸秆露天和炉灶燃烧气态污染物排放因子与其它文献的比较 /g ·kg-1

Table 3 Comparison with published emission factors of gas pollutions from crop straw burning/g ·kg-1
2.3 生物质燃料露天和炉灶燃烧PM2.5及OC、 EC的排放因子

表 4为秸秆在露天和炉灶燃烧条件下PM2.5及含碳组分的排放因子. 从中可见,露天燃烧的各类秸秆PM2.5平均排放因子在1.84~3.32 g ·kg-1,OC平均排放因子在0.75~1.08 g ·kg-1,EC平均排放因子在0.11~0.23 g ·kg-1,OC/EC的比值在4.7~8.1之间. 炉灶燃烧的各类秸秆PM2.5平均排放因子在4.36~12.77g ·kg-1,OC平均排放因子在1.29~3.35 g ·kg-1,EC平均排放因子在0.91~1.80g ·kg-1,OC/EC的比值在0.9~3.7之间. 测试发现,不同燃烧方式产生的PM2.5排放水平差异较大,炉灶燃烧的PM2.5排放因子明显高于露天燃烧,约为露天燃烧排放的3~4倍,主要是由于炉灶内燃烧空间有限,空气供给不足,秸秆处于缺氧燃烧状态,炉灶燃烧的EC在PM2.5中的比重显著高于露天燃烧,其它研究也有类似结果[19,39]. 此外,在炊事过程中人为添加秸秆,也会导致灰烬浮起进入烟气,使颗粒物浓度进一步增加[40].

从不同的秸秆类型来看,油菜的PM2.5排放因子最高,露天和炉灶燃烧可分别达到(3.32±0.56)g ·kg-1和(12.77±3.42)g ·kg-1,OC/EC比值也低于其他秸秆类型,与其他秸秆相比,油菜秸秆的水分和挥发分含量均相对较高,更易造成不完全燃烧,导致细颗粒高排放. 大豆在各类秸秆中的PM2.5排放因子相对较低,露天和炉灶燃烧可分别达到1.84g ·kg-1和(7.71±0.91) g ·kg-1,炉灶燃烧中薪柴的PM2.5排放因子最低可达4.36 g ·kg-1.

OC/EC比值是表征大气中细颗粒污染特征和来源的重要指标. 已有研究表明,以化石燃料燃烧排放为主导的城市大气中OC/EC的比值一般在3左右[41],而受柴油车排放影响的大气中OC/EC比值在1.1左右[42]. Li等[20]报道农作物秸秆露天燃烧颗粒物的OC/EC的均值为8.1. Ryu等[43,44]研究了韩国光州在不同时段收获季节的秸秆燃烧期空气中颗粒物的化学组成,发现PM2.5颗粒中的OC/EC的比值在6.5~8.3之间,Chuang等[45]在生物质燃烧源附近测得的OC/EC的比值为5.7±0.6. 本研究所得各类秸秆露天燃烧排放的OC/EC均值为6.9,其中大豆秸秆最高,为8.1; 油菜秸秆最低为4.7,可用于表征长三角地区环境空气中细颗粒污染受秸秆露天焚烧影响的判断依据[43, 44, 46, 47].

表 4 生物质露天和炉灶燃烧PM2.5及组分的排放因子 1) Table 4 Emission factors of PM2.5 Emissions from field and stove burning of crop straw
2.4 本研究生物质露天和炉灶燃烧PM2.5及OC、 EC的排放因子与其它文献的比较

表 5所示为本研究所得的PM2.5及含碳组分排放因子与其它文献的比较. 由于秸秆燃烧测定的排放因子受实验方法、 燃烧条件、 燃烧状态(明火与闷烧)、 秸秆的物理化学性质(如秸秆种类、 含水量、 碳氮含量、 密度、 等)的影响[51],所得的排放因子不尽相同. 由表 5可见,本研究测得小麦和水稻露天燃烧的PM2.5排放因子与已有研究相比略低,主要是由于本研究露天燃烧过程以明火燃烧为主,秸秆燃烧相对充分. 此外,采用烟罩法易使一定量的烟气在实验过程中逃逸,导致捕捉到的烟气量偏低. 炉灶燃烧排放的PM2.5及含碳组分排放因子与其他研究成果基本接近,具有一定的代表性. 此外,各研究所得的OC/EC比值存在较大差异,可能受秸秆种类和燃烧条件等因素的影响,说明开展本地化的实测研究对于掌握该地区秸秆燃烧的实际排放特征和成分谱资料具有十分重要的意义.

表 5 本研究生物质露天和炉灶燃烧PM2.5排放因子与其它文献的比较 Table 5 Comparison with published emission factors of PM2.5 from crop straw burning

2.5 不同秸秆燃烧排放的 PM2.5化学成分谱特征

图 2所示为生物质秸秆在不同燃烧条件下的PM2.5化学成分谱. 从中可见,露天燃烧排放颗粒物中OC的质量分数相对较高,平均为(38.92±13.93)%; 炉灶燃烧的OC质量分数为(26.37±10.14)%. 露天燃烧排放颗粒物中EC的质量分数为(5.66±1.54)%,炉灶燃烧的EC质量分数为(18.97±10.76)%.

图 2 生物质燃料露天和炉灶燃烧排放PM2.5源谱 Fig.2 Source profile of PM2.5 Emissions from crop straw burning

从燃烧类型来看,秸秆露天燃烧排放颗粒物中OC的含量明显高于炉灶燃烧,炉灶燃烧排放颗粒物中EC的含量高于露天燃烧,说明炉内燃烧空气供应有限以及炉膛内空气混合不均匀,易导致秸秆处于高温缺氧燃烧状态,使EC排放显著较高,而露天焚烧时氧含量较为充分,导致OC排放相对较高[10,56].

从秸秆类型来看,薪柴燃烧排放的EC组分含量最高,其在炉灶燃烧过程中产生的EC质量分数可达34.4%,这与Roden等[24]、 Shen等[36,57]实测的木材以及枫树、 橡树等薪柴燃烧产生的EC百分含量(分别为21%和43%)基本一致,这主要是由于木材中木质素含量较高[58],较高的木质素含量有利于碳黑的形成[40]. 同时,薪柴的挥发分含量相对较高,且结构密实,在燃烧时挥发分析出速度较慢,使其易于在炉内完全燃烧,减少了OC的生成比重.

其他组分中,Cl-、 K+在各秸秆燃烧排放的水溶性离子组分中的含量最为丰富,Cl-在露天燃烧排放颗粒物中的含量在6.64%~21.03%之间,在炉灶燃烧排放颗粒物中的含量在14.01%~29.37%之间; K+离子在露天燃烧排放颗粒物中的含量在8.65~16.01%之间,在炉灶燃烧排放颗粒物中的含量在11.94%~24.37%之间,与其它的研究成果基本一致[yes]. 由于秸秆燃烧排放颗粒物中的K+含量丰富,形态单一且化学性质稳定,因此K+经常被作为生物质燃烧的指示物[59,60]. 据有关文献报道,生物质燃烧排放的新鲜颗粒中含有大量KCl,在老化过程中,KCl通过与HNO3、 H2 SO4发生多相反应生成KNO3、 K2SO4,从而影响颗粒物的吸湿性以及颗粒物的成云凝结核的效率,最终对大气能见度和气候产生影响[61,62].

由于秸秆燃烧产生的颗粒物中含有大量K+和OC,因此,通常采用K+/OC的比值来表征秸秆燃烧排放,Duan等[14]研究了秸秆燃烧对北京市空气颗粒物中有机碳的贡献,发现当大气颗粒物中K+/OC值在0.19~0.21左右时,可认为是受到了小麦秸秆露天燃烧的影响. Ryu等[43]在韩国光州的研究发现,秸秆燃烧期间大气中PM2.5的K+/OC值在0.18~0.39之间. 本研究所得长三角地区小麦、 水稻、 油菜和豆秸等作物秸秆露天燃烧的K+/OC值分别为0.30、 0.52、 0.49和0.15,这些特征值可用于判断区域空气质量受秸秆燃烧排放影响的程度,为大气污染来源解析提供直接的判断依据.

3 结论

(1)选取5类长三角典型农作物秸秆,采用露天焚烧和炉灶燃烧的现场实测方法,开展了气态污染物和颗粒物排放测试研究. 研究发现,露天燃烧的各类秸秆CO平均排放因子在20.6~34.3 g ·kg-1,NOx平均排放因子在1.08~1.42g ·kg-1,NO/NO2的比值在3.2~4.7之间. 炉灶燃烧的各类秸秆CO平均排放因子在31.4~133.5g ·kg-1,NOx平均排放因子在1.65~2.43g ·kg-1,NO/NO2的比值在8.2~26.4之间. 炉灶燃烧比露天燃烧高,炉内供气量等燃烧条件对排放有重要影响.

(2)露天燃烧的各类秸秆PM2.5平均排放因子在1.84~3.32g ·kg-1,OC平均排放因子在0.75~1.08g ·kg-1,EC平均排放因子在0.11~0.23g ·kg-1,OC/EC在4.7~8.1之间. 炉灶燃烧的各类秸秆PM2.5平均排放因子在4.36~12.77g ·kg-1,OC平均排放因子在1.29~3.35g ·kg-1,EC平均排放因子在0.91~1.80g ·kg-1,OC/EC在0.9~3.7之间. 露天燃烧排放的OC/EC和秸秆燃烧季节大气中测得的基本相近,各类秸秆中,油菜的排放因子较高.

(3)含碳组分(OC和EC)是生物质燃料燃烧产生PM2.5颗粒物的主要组成,在露天燃烧中OC和EC的平均比重分别为(38.92±13.93)%、 (5.66±1.54)%; 炉灶燃烧中OC和EC的平均含量分别为(26.37±10.14)%、 (18.97±10.76)%. 水溶性Cl-、 K+也有较大贡献,其他研究也有类似结果. 小麦、 水稻、 油菜和豆秸等作物秸秆露天燃烧的K+/OC值分别为0.30、 0.52、 0.49和0.15,可用于判断长三角区域空气质量受秸秆燃烧排放影响的程度,为大气污染来源解析提供直接的判断依据.

参考文献
[1] Allen A G, Miguel A H. Biomass burning in the Amazon: characterization of the ionic component of aerosols generated from flaming and smoldering rainforest and savannah [J]. Environmental Science & Technology, 1995, 29 (2): 486-493.
[2] Yang Y, Zhang X X, Korenaga T. Distribution of polynuclear aromatic hydrocarbons (PAHs) in the soil of Tokushima, Japan [J]. Water, Air and Soil Pollution, 2002, 138 (1-4): 51-60.
[3] Yang H H, Tsai C H, Chao M R, et al. Source identification and size distribution of atmospheric polycyclic aromatic hydrocarbons during rice straw burning period [J]. Atmospheric Environment, 2006, 40 (7): 1266-1274.
[4] Miura Y, Kanno T. Emissions of trace gases (CO2, CO, CH4, and N2 O) resulting from rice straw burning [J]. Soil Science and Plant Nutrition, 1997, 43 (4): 849-854.
[5] Keshtkar H, Ashbaugh L L. Size distribution of polycyclic aromatic hydrocarbon particulate emission factors from agricultural burning [J]. Atmospheric Environment, 2007, 41 (13): 2729-2739.
[6] Lee M. Hydrogen peroxide, methyl hydroperoxide and formaldehyde in air impacted by biomass burning [D]. Island: University of Rhode Island, 1995. 13-15.
[7] Koppmann R, Von Czapiewski K, Reid J S. A review of biomass burning emissions, part Ⅰ: gaseous emissions of carbon monoxide, methane, volatile organic compounds, and nitrogen containing compounds [J]. Atmospheric Chemistry and Physics Discussions, 2005, 5 (5): 10455-10516.
[8] Liousse C, Penner J E, Chuang C, et al. A global three-dimensional model study of carbonaceous aerosols [J]. Journal of Geophysical Research: Atmospheres, 1996, 101 (D14): 19411-19432.
[9] Turn S Q, Jenkins B M, Chow J C, et al. Elemental characterization of particulate matter emitted from biomass burning: wind tunnel derived source profiles for herbaceous and wood fuels [J]. Journal of Geophysical Research: Atmospheres, 1997, 102 (D3): 3683-3699.
[10] Rau J A. Composition and size distribution of residential wood smoke particles [J]. Aerosol Science and Technology, 1989, 10 (1): 181-192.
[11] Abel S J, Highwood E J, Haywood J M, et al. The direct radiative effect of biomass burning aerosols over southern Africa [J]. Atmospheric Chemistry and Physics, 2005, 5 (7): 1999-2018.
[12] Menon S, Hansen J, Nazarenko L, et al. Climate effects of black carbon aerosols in China and India [J]. Science, 2002, 297 (5590): 2250-2253.
[13] 邓丛蕊. 中国大气气溶胶中生物质燃烧的源追踪及灰霾的形成机制[D]. 上海: 复旦大学, 2011. 38-39.
[14] Duan F K, Liu X D, Yu T, et al. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing [J]. Atmospheric Environment, 2004, 38 (9): 1275-1282.
[15] 朱佳雷, 王体健, 邓君俊, 等. 长三角地区秸秆焚烧污染物排放清单及其在重霾污染天气模拟中的应用[J]. 环境科学学报, 2012, 32 (12): 3045-3055.
[16] 尹聪, 朱彬, 曹云昌, 等. 秸秆焚烧影响南京空气质量的成因探讨[J]. 中国环境科学, 2011, 31 (2): 207-213.
[17] 伍德侠, 魏庆农, 魏健琍, 等. 秸秆焚烧期的碳黑气溶胶观测及研究[J]. 环境科学, 2008, 29 (12): 3304-3309.
[18] Ding A J, Fu C B, Yang X Q, et al. Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in eastern China [J]. Atmospheric Chemistry and Physics, 2013, 13 (20): 10545-10554.
[19] 祝斌, 朱先磊, 张元勋, 等. 农作物秸秆燃烧 PM2.5排放因子的研究[J]. 环境科学研究, 2005, 18 (2): 29-33.
[20] Li X H, Wang S X, Duan L, et al. Particulate and trace gas emissions from open burning of wheat straw and corn stover in China [J]. Environmental Science & Technology, 2007, 41 (17): 6052-6058.
[21] Cao G L, Zhang X Y, Gong S L, et al. Investigation on emission factors of particulate matter and gaseous pollutants from crop residue burning [J]. Journal of Environmental Sciences, 2008, 20 (1): 50-55.
[22] Dhammapala R, Claiborn C, Simpson C, et al. Emission factors from wheat and Kentucky bluegrass stubble burning: comparison of field and simulated burn experiments [J]. Atmospheric Environment, 2007, 41 (7): 1512-1520.
[23] Jimenez J R, Claiborn C S, Dhammapala R S, et al. Methoxyphenols and levoglucosan ratios in PM2.5 from wheat and Kentucky bluegrass stubble burning in eastern Washington and northern Idaho [J]. Environmental Science & Technology, 2007, 41 (22): 7824-7829.
[24] Roden C A, Bond T C, Conway S, et al. Emission factors and real-time optical properties of particles emitted from traditional wood burning cookstoves [J]. Environmental Science & Technology, 2006, 40 (21): 6750-6757.
[25] Li X H, Wang S X, Duan L, et al. Carbonaceous aerosol emissions from household biofuel combustion in China [J]. Environmental Science & Technology, 2009, 43 (15): 6076-6081.
[26] Chow J C, Watson J G, Chen L W, et al. Refining temperature measures in thermal/optical carbon analysis [J]. Atmospheric Chemistry and Physics, 2005, 5 (11): 2961-2972.
[27] VITA(Volunteers in Technical Assistance, Inc), Testing the efficiency of wood-burning cookstoves: International Standards [S]. Arlington, VA, USA. 1985.
[28] Andreae M O, Merlet P. Emission of trace gases and aerosols from biomass burning [J]. Global Biogeochemical Cycles, 2001, 15 (4): 955-966.
[29] Zhang Y S, Shao M, Lin Y, et al. Emission inventory of carbonaceous pollutants from biomass burning in the Pearl River Delta Region, China [J]. Atmospheric Environment, 2013, 76 : 189-199.
[30] 刘丽华, 蒋静艳, 宗良纲. 农业残留物燃烧温室气体排放清单研究: 以江苏省为例[J]. 环境科学, 2011, 32 (5): 1242-1248.
[31] Lacaux J P, Brustet J M, Delmas R, et al. Biomass burning in the tropical savannas of Ivory Coast: An overview of the field experiment Fire of Savannas (FOS/DECAFE 91) [J]. Journal of Atmospheric Chemistry, 1995, 22 (1-2): 195-216.
[32] Zhang H F, Ye X N, Cheng T T, et al. A laboratory study of agricultural crop residue combustion in China: Emission factors and emission inventory [J]. Atmospheric Environment, 2008, 42 (36): 8432-8441.
[33] Sahai S, Sharma C, Singh D P, et al. A study for development of emission factors for trace gases and carbonaceous particulate species from in situ burning of wheat straw in agricultural fields in India [J]. Atmospheric Environment, 2007, 41 (39): 9173-9186.
[34] Wang S X, Wei W, Du L, et al. Characteristics of gaseous pollutants from biofuel-stoves in rural China [J]. Atmospheric Environment, 2009, 43 (27): 4148-4154.
[35] Wei W, Zhang W, Hu D, et al. Emissions of carbon monoxide and carbon dioxide from uncompressed and pelletized biomass fuel burning in typical household stoves in China [J]. Atmospheric Environment, 2012, 56 : 136-142.
[36] Shen G F, Yang Y F, Wang W, et al. Emission factors of particulate matter and elemental carbon for crop residues and coals burned in typical household stoves in China [J]. Environmental Science & Technology, 2010, 44 (18): 7157-7162.
[37] Zhang J, Smith K R, Ma Y, et al. Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors [J]. Atmospheric Environment, 2000, 34 (26): 4537-4549.
[38] Zhang J, Smith K R, Uma R, et al. Carbon monoxide from cookstoves in developing countries: 1. Emission factors [J]. Chemosphere-Global Change Science, 1999, 1 (1-3): 353-366.
[38] Zhang J, Smith K R, Uma R, et al. Carbon monoxide from cookstoves in developing countries: 1. Emission factors [J]. Chemosphere-Global Change Science, 1999, 1 (1-3): 353-366.
[39] Wiinikka H, Gebart R. The influence of fuel type on particle emissions in combustion of biomass pellets [J]. Combustion Science and Technology, 2005, 177 (4): 741-763.
[40] Wiinikka H, Gebart R. The influence of fuel type on particle emissions in combustion of biomass pellets [J]. Combustion Science and Technology, 2005, 177 (4): 741-763.
[41] Zhang X Y, Wang Y Q, Zhang X C, et al. Carbonaceous aerosol composition over various regions of China during 2006 [J]. Journal of Geophysical Research: Atmospheres, 2008, 113 (D14): 111-121.
[42] Ryu S Y, Kim J E, Zhuanshi H, et al. Chemical composition of post-harvest biomass burning aerosols in Gwangju, Korea [J]. Journal of the Air & Waste Management Association, 2004, 54 (9): 1124-1137.
[43] Ryu S Y, Kwon B G, Kim Y J, et al. Characteristics of biomass burning aerosol and its impact on regional air quality in the summer of 2003 at Gwangju, Korea [J]. Atmospheric Research, 2007, 84 (4): 362-373.
[44] Chuang M T, Chou C C K, Sopajaree K, et al. Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment [J]. Atmospheric Environment, 2012, 78 : 72-81.
[45] Huang K, Fu J S, Hsu N C, et al. Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA [J]. Atmospheric Environment, 2012, 78 : 291-302.
[46] Ram K, Sarin M M. Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India [J]. Journal of Aerosol Science, 2010, 41 (1): 88-98.
[47] Johnson M, Edwards R, Frenk C A, et al. In-field greenhouse gas emissions from cookstoves in rural Mexican households [J]. Atmospheric Environment, 2008, 42 (6): 1206-1222.
[48] Lobert J M, Warnatz J. Emissions from the combustion process in vegetation [A]. In: Crutzen P J, Goldammer J G (Eds.). Fire in the Environment [C]. Chichester: John Wiley Sons, 1993. 15-37.
[49] Dhammapala R, Claiborn C, Jimenez J, et al. Emission factors of PAHs, methoxyphenols, levoglucosan, elemental carbon and organic carbon from simulated wheat and Kentucky bluegrass stubble burns [J]. Atmospheric Environment, 2007, 41 (12): 2660-2669.
[50] Hays M D, Fine P M, Geron C D, et al. Open burning of agricultural biomass: Physical and chemical properties of particle-phase emissions [J]. Atmospheric Environment, 2005, 39 (36): 6747-6764.
[51] Oanh N T K, Ly B T, Tipayarom D, et al. Characterization of particulate matter emission from open burning of rice straw [J]. Atmospheric Environment, 2011, 45 (2): 493-502.
[52] Christian T J, Kleiss B, Yokelson R J, et al. Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels [J]. Journal of Geophysical Research, 2003, 108 (D23): 4719-4732.
[53] Habib G, Venkataraman C, Bond T C, et al. Chemical, microphysical and optical properties of primary particles from the combustion of biomass fuels [J]. Environmental Science & Technology, 2008, 42 (23): 8829-8834.
[54] Mcdonald J D, Zielinska B, Fujita E M, et al. Fine particle and gaseous emission rates from residential wood combustion [J]. Environmental Science & Technology, 2000, 34 (11): 2080-2091.
[55] Bond T C, Streets D G, Yarber K F, et al. A technology-based global inventory of black and organic carbon emissions from combustion [J]. Journal of Geophysical Research, 2004, 109 (D14): 203-246.
[56] Shen G F, Wei S Y, Wei W, et al. Emission factors, size distributions, and emission inventories of carbonaceous particulate matter from residential wood combustion in rural China [J]. Environmental Science & Technology, 2012, 46 (7): 4207-4214.
[57] Shen G F, Wei S Y, Wei W, et al. Emission factors, size distributions, and emission inventories of carbonaceous particulate matter from residential wood combustion in rural China [J]. Environmental Science & Technology, 2012, 46 (7): 4207-4214.
[58] Andreae M O. Soot carbon and excess fine potassium: Long-range transport of combustion-derived aerosols [J]. Science, 1983, 220 (4602): 1148-1151.
[59] Chow J C. Measurement methods to determine compliance with ambient air quality standards for suspended particles [J]. Journal of the Air & Waste Management Association, 1995, 45 (5): 320-382.
[60] Li J, Pósfai M, Hobbs P V, et al. Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles [J]. Journal of Geophysical Research, 2003, 108 (D13): 1-12.
[61] Gaudichet A, Echalar F, Chatenet B, et al. Trace elements in tropical African savanna biomass burning aerosols [J]. Journal of Atmospheric Chemistry, 1995, 22 (1-2): 19-39.