首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
过水性湖泊水质长期演变趋势及驱动因素:以骆马湖为例
摘要点击 2158  全文点击 1741  投稿时间:2022-03-10  修订日期:2022-04-22
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  浅水湖泊|水质|时空演变|季节动态|驱动因素
英文关键词  shallow lake|water quality|spatiotemporal succession patterns|seasonal dynamics|driving factors
作者单位E-mail
黄雪滢 南京大学地理与海洋科学学院, 南京 210023
中国科学院南京地理与湖泊研究所, 流域地理学重点实验室, 南京 210008 
Sylvia_Huangxy@163.com 
高鸣远 江苏省水文水资源勘测局, 南京 210029  
王金东 江苏省骆运水利工程管理处, 宿迁 223800  
王明明 宿迁市水利局, 宿迁 223800  
陈思恩 南京大学环境学院, 南京 210023  
龚志军 中国科学院南京地理与湖泊研究所, 流域地理学重点实验室, 南京 210008  
王腊春 南京大学地理与海洋科学学院, 南京 210023  
蔡永久 中国科学院南京地理与湖泊研究所, 流域地理学重点实验室, 南京 210008 caiyj@niglas.ac.cn 
中文摘要
      过水性湖泊——骆马湖是南水北调东线工程的重要调蓄湖泊,具有防洪抗旱、饮用水供给和生态维护等多种功能.为了解骆马湖水质演变及驱动因素,基于2009~2020年长序列逐月实测数据,结合1996~2008年历史资料,分析了骆马湖总氮(TN)、总磷(TP)、高锰酸盐指数和氨氮(NH+4-N)等指标的长期演变、季节动态和空间格局,探究了气象和水文因子对湖泊水质的影响机制.结果表明,近25年来,骆马湖水质总体处于Ⅳ~劣Ⅴ类.ρ(TN)变化明显(1.06~3.49 mg·L-1),历经波动下降(1996~2002年)、显著的年际波动(2002~2015年)和显著上升(2015~2020年)这3个阶段,是骆马湖的主要污染因子.高锰酸盐指数显著下降(2.97~6.38 mg·L-1),ρ(TP)和ρ(NH+4-N)波动相对较小,分别介于0.024~0.076 mg·L-1和0.11~0.69 mg·L-1.2017~2020年夏季ρ(TN)和ρ(TP)异常增高,8月分别达到3.30 mg·L-1和0.14 mg·L-1,约为年平均值的1.5倍和2.4倍.季节动态方面,夏秋季水质较2015年前发生较大转变,表现为夏秋季劣于冬春季,存在富营养化加剧风险.空间上南部湖区水质明显优于北部湖区.沂河和中运河污染负荷的输入随入湖水量的增加而增强,进而驱动骆马湖的水质变化.建议从加强流域污染治理、内源防控、退圩还湖和生态修复等方面保障骆马湖水环境安全.
英文摘要
      Lake Luoma is an important storage lake for the Eastern route of the South-to-North Water Diversion Project (NSBD), which has many functions including flood control and irrigation, drinking water supply, and ecological maintenance. In order to understand the succession patterns and driving factors of water quality in Lake Luoma, we used monthly monitoring data from 2009 to 2020 in combination with historical data from 1996 to 2008. The long-term succession patterns, seasonal dynamics, and spatial patterns of total nitrogen (TN), total phosphorus (TP), permanganate index, and ammonia nitrogen (NH+4-N) were examined, and the influence of meteorological and hydrological factors on water quality was explored through correlation analyses and generalized additive models. The results showed that it remained in the status of grade Ⅳ-inferior Ⅴ over the past 25 years. The concentration of TN, which was the main pollutant, changed significantly (1.06-3.49 mg·L-1), experiencing three stages of gradual decline (1996-2002), significant interannual fluctuation (2002-2015), and significant increase (2015-2020). Permanganate index decreased significantly (2.97-6.38 mg·L-1), whereas TP and NH+4-N concentration fluctuated slightly, ranging from 0.024-0.076 mg·L-1 and 0.11-0.69 mg·L-1, respectively. The concentration of TN and TP increased abnormally in the summer of 2017-2020, reaching 3.30 mg·L-1 and 0.14 mg·L-1 in August, respectively, which was approximately 1.5 and 2.4 times the annual average. In terms of seasonal dynamics, the seasonal variation in water quality between summer/autumn and winter/spring reversed after 2015, with water quality in summer/autumn being worse than that in winter and spring, indicating the exacerbation of eutrophication. The water quality in the southern area was obviously better than that in the northern area. The input of pollutants from the Yihe River and Middle Canal increased with water quantity since 2015, which drove the water quality deterioration through nutrients. Our results suggested that the water quality of Lake Luoma should be improved by strengthening exogenous pollution reduction, endogenous control, polder dismantling, and ecological restoration.

您是第54702477位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2