首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
紫外活化过硫酸盐降解磷酸氯喹
摘要点击 1490  全文点击 529  投稿时间:2021-10-07  修订日期:2022-01-24
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  紫外  过硫酸盐  磷酸氯喹  动力学模型  高级氧化
英文关键词  ultraviolet  persulfate  chloroquine phosphate  kinetic modeling  advanced oxidation
作者单位E-mail
李阳 东南大学土木工程学院, 南京 211189 liyangyangyang9@163.com 
许玻珲 东南大学土木工程学院, 南京 211189  
邓琳 东南大学土木工程学院, 南京 211189 dlwhu@163.com 
罗伟 东南大学土木工程学院, 南京 211189  
中文摘要
      以抗新型冠状肺炎药物——磷酸氯喹(CQP)为研究对象,考察其在紫外活化过硫酸盐体系(UV/PS)中的降解效果.通过竞争动力学实验,确定了CQP与羟基自由基(HO·)和硫酸根自由基(SO4-·)的二级反应速率常数,同时考察了PS浓度、pH和常见无机阴离子对UV/PS体系中CQP降解的影响,并通过建立动力学模型预测CQP浓度和主要自由基浓度以探究其影响机制.结果表明,UV/PS体系对CQP的降解效果显著优于单一UV、单一太阳光或单一PS体系,在10 min内可降解91.3%的CQP;在pH为6.9的条件下,CQP与HO·和SO4-·的二级反应速率常数分别为8.9×109 L·(mol·s)-1和1.4×1010 L·(mol·s)-1,其中SO4-·是主要活性物种;CQP的降解速率随PS浓度增加而增大,HCO3-和Cl-的加入对UV/PS体系中CQP的去除起到抑制作用,碱性较强的条件不利于CQP的转化.经LC-MS分析,发现CQP在UV/PS体系中主要经过N-脱乙基化、C—N键断裂和抽氢等反应被逐步降解为其他有机中间产物.加大PS浓度和pH可提高其矿化率.此研究可为抗新冠肺炎医药废水的处理提供帮助.
英文摘要
      The degradation of chloroquine phosphate (CQP), an anti-COVID-19 drug, was investigated in a UV-activated persulfate system (UV/PS). The second-order rate constants of CQP with hydroxyl radicals (HO·) and sulfate radicals (SO4-·) were determined using a competition kinetics experiment, and the effects of persulfate concentration, pH, and inorganic anions on the degradation of CQP were also systematically studied. Furthermore, a kinetic model was established to predict the concentration of CQP and major free radicals to explore its mechanism of influence. The results showed that the degradation efficiency of CQP could reach 91.3% after 10 min under UV/PS, which was significantly higher than that under UV, sunlight, or PS alone. At pH=6.9, the second-order rate reaction constants of CQP with HO· and SO4-· were 8.9×109 L·(mol·s)-1and 1.4×1010 L·(mol·s)-1, respectively, and the main active species was SO4-·. The degradation rate of CQP increased with increasing concentrations of PS and decreased with the addition of HCO3- and Cl-. The removal efficiency of CQP was inhibited under stronger alkaline conditions. N-de-ethylation, cleavage of the C-N bond, and hydrogen abstraction were proposed as the principal pathways of CQP degradation based on LC-MS analysis. The mineralization rate of CQP could be improved by increasing PS concentration and pH values. This study could be helpful for the treatment of anti-COVID-19 pharmaceutical wastewater.

您是第54252938位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2