首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
长三角地区气溶胶光学性质与新粒子生成观测
摘要点击 1992  全文点击 634  投稿时间:2019-11-29  修订日期:2020-03-29
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  新粒子生成  化学组分  光学参数  MIE理论  IMPROVE方法
英文关键词  new particle generation  chemical constituent  optical coefficient  MIE theory  IMPROVE method
作者单位E-mail
杜盈盈 上海理工大学能源与动力工程学院, 上海市动力工程多相流动与传热重点实验室, 上海 200093 dyyer131421@163.com 
陈军 上海理工大学能源与动力工程学院, 上海市动力工程多相流动与传热重点实验室, 上海 200093 j.chen@usst.edu.cn 
张家洛 上海理工大学能源与动力工程学院, 上海市动力工程多相流动与传热重点实验室, 上海 200093  
甘桂城 上海理工大学能源与动力工程学院, 上海市动力工程多相流动与传热重点实验室, 上海 200093  
刘瑜存 上海理工大学能源与动力工程学院, 上海市动力工程多相流动与传热重点实验室, 上海 200093
上海市环境科学研究院, 国家环境保护城市大气复合污染成因与防治重点实验室, 上海 200233
上海祥得环保科技有限公司, 上海 200235 
 
苏明旭 上海理工大学能源与动力工程学院, 上海市动力工程多相流动与传热重点实验室, 上海 200093  
楼晟荣 上海市环境科学研究院, 国家环境保护城市大气复合污染成因与防治重点实验室, 上海 200233  
周敏 上海市环境科学研究院, 国家环境保护城市大气复合污染成因与防治重点实验室, 上海 200233  
陶士康 上海市环境科学研究院, 国家环境保护城市大气复合污染成因与防治重点实验室, 上海 200233  
乔利平 上海市环境科学研究院, 国家环境保护城市大气复合污染成因与防治重点实验室, 上海 200233  
中文摘要
      2019年5月27日~6月27日对江苏省常州市的气溶胶光学性质参数、颗粒物数浓度和PM2.5组分进行观测,联用扫描电迁移率粒径谱仪(SMPS)、黑碳仪(AE33)、腔衰减相移式单次反照率监测仪(CAPS)、在线离子色谱分析仪(MARGA)和RT-4型有机碳/元素碳(OC/EC)分析仪分析:①新粒子生成期间化学组分与光学参数的变化;②IMPROVE、MIE理论重建消光系数与实测值的闭合性对比.观测期间共有两次明显的新粒子生成事件,粒子粒径从4 nm持续增长到64 nm,在新粒子生成初期硫酸盐贡献较大,生成过程中实测平均消光系数为95.40 Mm-1,IMPROVE模型重建平均消光系数为140.20 Mm-1,MIE理论模型计算平均消光系数为93.54 Mm-1,低于我国城市气溶胶消光系数均值300 Mm-1.本次观测采用多仪器联用的方式从颗粒物数浓度粒径谱、化学组分谱等不同的方面更好地对气溶胶理化性质进行表征.
英文摘要
      In a recent field campaign focused on air quality study, aerosol optical properties, particle number concentration, and PM2.5 components were monitored in Changzhou, Jiangsu Province, from May 27 to June 27, 2019. An array of instruments were deployed that included scanning mobility particle size spectrometer (SMPS), aethalometer (AE33), cavity attenuation phase shift single albedo monitor (CAPS-ALB), monitor for aerosols and gases in ambient air (MARGA) and RT-4 organic carbon/elemental carbon (OC/EC) carbon analyzer to study the ① changes in chemical composition and optical parameters of the new particles generated during the campaign period. ② comparison of the aerosol extinction coefficient recorded by these instruments and measured value in the reconstruction of IMPROVE (interagency monitoring of protected visual environment) and the calculated coefficient using MIE theory model were carried out. During the entire campaign, two new particle generation events were observed and also found that the particle size continued to increase from 4 nm to 64 nm. It was monitored that in the initial stage of new particle generation, sulfate contributed greatly. The measured average aerosol extinction coefficient during the period of particle generation, using these instruments was 95.40 Mm-1, while the average aerosol extinction reconstruction using the IMPROVE model was observed to be 140.20 Mm-1. The theoretical calculations based on Mie theory model yielded an average extinction coefficient of 93.54 Mm-1. It was found that the average aerosol extinction in Changzhou is lower than the average value of the urban aerosol extinction coefficient, which is measured to be 300 Mm-1 in China, during this period. The deployment of multiple instruments in a single campaign is more desirable because the combination of all observations helped in better characterization of the physicochemical properties of ambient aerosols from various aspects, including particle size spectrum and chemical composition.

您是第54253797位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2