首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
柳林泉域岩溶地下水区域演化规律及控制因素
摘要点击 2529  全文点击 759  投稿时间:2018-11-02  修订日期:2018-12-06
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  岩溶地下水  水化学特征  去白云化作用  柳林泉  补给区  径流区  排泄区  深埋区
英文关键词  Karst groundwater  hydrochemical characteristics  dedolomitization  Liulin Spring catchment  supply area  runoff area  discharge area  deep buried area
作者单位E-mail
黄奇波 中国地质科学院岩溶地质研究所, 桂林 541004
国土资源部广西岩溶动力学重点实验室, 桂林 541004 
qbohuang0108@163.com 
覃小群 中国地质科学院岩溶地质研究所, 桂林 541004
国土资源部广西岩溶动力学重点实验室, 桂林 541004 
qxq@karst.ac.cn 
刘朋雨 中国地质科学院岩溶地质研究所, 桂林 541004
国土资源部广西岩溶动力学重点实验室, 桂林 541004 
 
程瑞瑞 中国地质科学院岩溶地质研究所, 桂林 541004
国土资源部广西岩溶动力学重点实验室, 桂林 541004 
 
李腾芳 中国地质科学院岩溶地质研究所, 桂林 541004
国土资源部广西岩溶动力学重点实验室, 桂林 541004 
 
中文摘要
      柳林泉是山西省著名的十大岩溶大泉之一,丰富的岩溶地下水资源对吕梁地区经济社会发展具有支撑作用,开展岩溶地下水化学演化规律及控制因素研究对于流域水资源可持续利用意义重大.本研究对补给区、径流区、排泄区、深埋区的29个岩溶地下水主要离子组分进行测试分析.结果表明,水温、Na+、Ca2+、Mg2+、Cl-、HCO3-、SO42-质量浓度从补给区、到径流区、到排泄区、再到深埋区,随着径流途径增加不断升高.K+、Na+、Cl-主要来源于盐岩的溶解;而Ca2+、Mg2+、HCO3-、SO42-主要来源于方解石、白云石和石膏的溶解.受控于盐岩、石膏的不断溶解,Na+、Cl-和SO42-质量浓度增加幅度大,最大值分别为最小值的50、80和32倍;受去白云化作用的影响,Ca2+、HCO3-质量浓度变化不大,最大值仅为最小值的2~3倍.在补给区、径流区,Na+、Cl-质量浓度较低,Ca2+和Mg2+、HCO3-为主要阴阳子,但在排泄区和深埋区,Cl-、Na+明显超过了HCO3-、Ca2+和Mg2+,成为最主要的阴阳离子;水化学类型由HCO3-Ca·Mg型转化为HCO3·SO4-Ca·Mg型和HCO3·SO4-Ca·Na·Mg型,最终演变为Cl·HCO3-Na·Ca、Cl·HCO3-Na型和Cl-Na·Ca型.
英文摘要
      The Liulin Spring is one of the ten most famous karst springs in the Shanxi province. The abundant karst groundwater resources support the economic and social development in the Luliang Prefecture. Therefore, the study of evolution and control factors of karst groundwater is of great significance to the sustainable utilization of water resources in the watershed. For revealing the evolution and control factors of karst groundwater in the Liulin Spring area, the main ion components of 29 karst groundwater samples from spring supply area, runoff area, discharge area, and deep buried area were analyzed. The results showed that the temperature and Na+, Ca2+, Mg2+, Cl-, HCO3-, and SO42- concentrations increased continuously along the runoff route, from the recharge area to the runoff area, to the discharge area, and then to the deep burial area. K+, Na+, and Cl- mainly come from salt rock dissolution, and Ca2+, Mg2+, HCO3-, and SO42- mainly come from the dissolution of calcite, dolomite, and gypsum. Because they are controlled by the continuous dissolution of salt rock and gypsum, the concentration of Na+, Cl-, and SO42- in groundwater has increased greatly, with the maximum value being 50 times, 80 times, and 32 times of the minimum value, respectively. Under the influence of dedolomitization, the concentration of Ca2+ and HCO3- in groundwater does not change significantly, the maximum is 2-3 times of the minimum. In the recharge area and runoff area, Na+ and Cl- amounts are lower, and Ca2+ and HCO3- are the main cations and anions in the groundwater. However, in the discharge area and deep buried area, Cl- and Na+ exceed HCO3-, Ca2+, and Mg2+ and become the main anions and cations in the groundwater. The hydrochemical type changes from HCO3-Ca·Mg in the supply area to HCO3·SO4-Ca·Mg in the runoff area, to HCO3·SO4-Ca·Na·Mg in the recharge area, and finally to Cl·HCO3-Na·Ca, Cl·HCO3-Na, and Cl-Na·Ca in the deep burial area.

您是第54226950位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2