

(HUANJING KEXUE)

ENVIRONMENTAL SCIENCE

第39卷 第5期

Vol.39 No.5

2018

____ 中国科学院生态环境研究中心 主办

斜学出版社出版

ENVIRONMENTAL SCIENCE

第 39 卷 第 5 期 2018年5月15日

次 Ħ

DOM 不同相对分子质量组分在无机矿物上的吸附及 其对卡马西平吸附的影响实验

梁雨,何江涛*,张思

(中国地质大学(北京)水资源与环境学院,水资源与环境工程北京市重点实验室,北京 100083)

摘要:为探究溶解性有机质(DOM)不同相对分子质量组分在矿物质上的吸附特征及其与药物和个人护理品(PPCPs)类污染物的结合作用对两者吸附过程的影响,以卡马西平作为目标污染物,用商用腐殖酸制备 DOM,以石英砂代表无机矿物,开展吸附实验,并采用透析实验和红外光谱表征等手段,探讨了不同相对分子质量腐殖酸(HA)的结构特征及其与卡马西平(CBZ)的结合作用对 HA 或 CBZ 在固相介质上吸附作用的差异及产生机制.结果表明,大分子量 HA 有更多的羟基、芳香烃和脂肪烃,以疏水物质为主;而小分子量 HA 有更多的醇和羧基,以亲水物质为主. HA 与 CBZ 的结合主要通过 CBZ 的氨基与小分子量 HA 中极性官能团的结合,以及 CBZ 疏水基团与大分子量 HA 中脂肪族与芳香族的疏水作用. CBZ 与 HA 之间的相互作用对腐殖酸或卡马西平的吸附产生明显差异.当 CBZ 不存在时,石英砂主要通过疏水作用结合 HA 中疏水性大分子或与 HA 的羟基、羧基等发生交换配位反应,且石英砂更倾向于吸附 HA 中的脂肪性及疏水性大分子组分.当 CBZ 存在时,石英砂转而吸附 HA 中的小分子量部分,且 HA 在石英砂上的最大吸附量减小.当 HA 不存在时,CBZ 可通过疏水作用,范德华力和极性相互作用使其在石英砂上有一定量的吸附.加入 HA 后,石英砂吸附增加的 CBZ 归因于部分 HA 分子与 CBZ 结合后共吸附或累积吸附于石英砂上.

关键词:腐殖酸;卡马西平;石英砂;吸附;相对分子质量

中图分类号: X131.2 文献标识码: A 文章编号: 0250-3301(2018)05-2219-11 **DOI**: 10.13227/j. hjkx. 201708012

Adsorption of Dissolved Organic Matter with Different Relative Molecular Masses on Inorganic Minerals and Its Influence on Carbamazepine Adsorption Behavior

LIANG Yu, HE Jiang-tao*, ZHANG Si

(Key Laboratory of Water Resources and Environment Engineering, School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China)

Abstract: In this work, sorption experiments were conducted to understand the adsorption characteristics of dissolved organic matter (DOM) of different relative molecular masses on minerals and the effects of their interaction with PPCPs on the adsorption process. This study chose carbamazepine (CBZ) as the target pollutant, quartz sand as the inorganic mineral, and commercial humic acid (HA) as the DOM. We studied the structural characteristics of HA with different relative molecular masses and the impact of their interaction with CBZ on their adsorption based on dialysis experiments and infrared spectroscopy. It was found that large molecular weight fractions of HA, which contain more hydroxyl, aromatic hydrocarbons, and aliphatic hydrocarbons, were mainly hydrophobic substances, while the smaller fractions, containing more alcohols and carboxyl groups, were mainly hydrophilic substances. The combination of HA and CBZ had two major mechanisms, the combination of amino groups of CBZ and polar functional groups in small molecular weight fractions of HA and hydrophobic interactions between hydrophobic groups and aliphatic or/aromatic compounds in large molecular weight HA. The interaction between CBZ and HA resulted in obvious differences in the adsorption of HA or CBZ. When CBZ does not exist, hydrophobic combinations occurred between HA through the hydrophobic components and quartz sand, which also experienced the exchange coordination reaction with the hydroxyl or carboxyl group of HA. In addition, HA adsorbed the aliphatic and hydrophobic macromolecular components. Quartz sand was used to adsorb the large hydrophobic molecules. When CBZ existed, it adsorbed the small molecular weight fractions of HA. The maximum HA adsorption capacity of quartz sand decreased. CBZ could be adsorbed on quartz sand by hydrophobic interaction, van Edward forces, and polarity interactions in the absence of HA. When adding HA, the adsorption increment of carbamazepine on quartz sand was due to the co-adsorption or accumulation of HA and CBZ after their combination.

Key words: humic acid(HA); carbamazepine(CBZ); quartz sand; adsorption; relative molecular mass

^{*} 通信作者, E-mail: jthe@ cugb. edu. cn

随着药物和个人护理品 (pharmaceuticals and personal care products, PPCPs)生产和使用的不断增 加,加之对其处理力度不够,导致环境中 PPCPs 含 量激增,存在范围扩大[1]. PPCPs 在环境中的残留 浓度低, 但分布广, 成分复杂, 长期低剂量暴露会 产生一种假性持续性现象,对人类健康及生态环境 造成危害^[2]. 卡马西平(carbamazepine, CBZ):抗惊 厥类药物,会引起肾功能损害,剥落性皮炎,血系 统损害等,是 PPCPs 类污染物中具有典型代表性的 一种,由于其性质高度稳定,降解周期长,因而无 论是污水处理厂的处理还是天然生物降解,都不能 被有效去除[3].溶解性有机质(dissolved organic matter, DOM)在地下环境中广泛存在, 具有较大的 比表面积和众多的表面反应位点, 能与矿物作用并 形成有机质-矿质复合体, 且对污染物有很高的吸附 亲和力, 成为地下环境中移动性较弱污染物的良好 吸附剂和迁移载体[4]. 矿物与 DOM 的作用改变了矿 物表面特性和反应活性[5],进而影响了污染物在矿 物界面上的迁移性[6]. 因此, 研究 DOM 与矿物之间 的相互作用不仅是了解土壤和沉积物界面特性的基 础,也是阐述自然环境中污染物行为的基础[7].

近年来许多学者对 DOM 在矿物质上的吸附行 为及其对有机污染物吸附行为的影响开展了相关研 究. 研究表明矿物质对 DOM 不同官能团的吸附亲 和力有差异, 最终是芳香类物质还是脂肪类物质被 优先吸附下来, 难以达成共识. 张立超等[8] 发现与 富里酸相比, 蛭石优先吸附胡敏酸, 而 Wang 等[9] 的研究表明蒙脱石和高岭土等黏土矿物会优先吸附 胡敏酸的脂肪类组分. 不同研究发现 DOM 与污染 物的结合方式差别较大. 卡马西平可以通过氢键、 共价键等作用与亲水区中极性官能团结合, 也可以 嵌入疏水区中与之形成疏水键[10~12],最终成为复 合体. 三嗪农药不单能以疏水键与 DOM 结合, 也 可通过氢键结合,且结合作用更强[10].不同分子量 的 DOM 在土壤介质中的吸附及其与污染物的结合 能力, 其机制尚不明确. 小分子含有更多的有利于 被吸附的酸基和芳香基, 而大分子疏水强, 同时形 成的颗粒大, 熵效应也强, 这些都有利于大分子腐 殖酸部分被矿物吸附; 也可能存在小分子先被吸 附,然后被大分子部分取代而最终达到吸附平 衡[13]. Specht 等的研究表明[14], 天然有机质的疏 水性大分子与蒙脱石有较高的亲和性, 然而 Chorover 等的研究表明[15], 蒙脱石优先吸附天然有 机质的小分子部分. Zhang 等[16]研究高分子量蛋白 胨与低分子量苹果酸对三氯苯及四氯苯在木炭上吸附的影响,结果发现二者均抑制了污染物的吸附,而分子量位于中间的腐殖酸则表现出对污染物吸附作用的促进,原因是腐殖酸自身吸附到木炭上后增加了木炭对污染物的吸附位点.

前人对 DOM 的研究主要集中在天然 DOM 的区域特性及其来源、组分等对有机污染物吸附行为的影响,对 DOM 在矿物质上的吸附及其与 PPCPs结合方式的研究尚不够充分;且相关研究多限于有机质整体,将有机质通过相对分子质量进行分级再做研究的很少.为进一步探索 DOM 在矿物质上的吸附及其与 PPCPs 类污染物的结合作用对两者在吸附过程中的影响,本文选择卡马西平作为目标污染物,用商用腐殖酸制备 DOM 开展吸附批实验研究,分析了 DOM 对目标污染物和介质颗粒间连接作用的差异、产生机制以及目标污染物对 DOM 在无机矿物上吸附的影响,并尝试通过 DOM 中各个相对分子质量级分对卡马西平吸附贡献的大小,分析各级分与目标污染物间的作用机制.

1 材料与方法

1.1 实验材料

本实验选用 100~200 目的分析纯石英砂,购自国药集团化学试剂有限公司,并对其进行了矿物成分的分析(X 射线衍射),证实其矿物成分是石英,颜色为乳白色或无色半透明状,硬度 7,相对密度 2.65 g·cm⁻³.石英砂是无机矿物的重要组成部分,在土壤沉积物中分布十分广泛,本次实验以单一的石英砂作为吸附介质,可与研究混合介质(如石英砂加黏土矿物、石英砂加铁/锰氧化物等)吸附形成对比,以此来探究介质中黏土矿物或铁/铝/锰等氧化物所起到的作用.因此实验选用石英砂作为目标介质展开相关研究.

本实验中, CBZ 标准品购自德国 Dr. Ehrenstorfer 公司, 纯度为99.5%, 其结构和理化性质见表1,结构式见图1. 腐殖酸为化学纯, 购自国药集团化学试剂有限公司.

腐殖酸溶液配制:称取5g腐殖酸于烧杯中,并注入1L超纯水,将其pH调节至10助溶,用玻璃棒充分搅拌;将烧杯放入超声波仪,超声30 min,使腐殖酸水溶性部分充分溶解入水中;用溶剂过滤器进行抽滤,滤膜采用孔径为0.45 μm 水系滤膜,将其滤出液作为实验用溶解性腐殖酸(humic acid, HA)原液,后用盐酸将腐殖酸原液的pH调节至7

待用. 使用总有机碳测定仪检测腐殖酸原液的 TOC浓度为 $700 \text{ mg} \cdot \text{L}^{-1}$.

卡马西平溶液配制:用分析天平称取 0.10 g卡马西平粉末倒入1 L 棕色容量瓶,用移液器向容量

瓶中添加 2 mL 甲醇振荡至卡马西平溶解, 加超纯水定容, 即配成 100 mg·L⁻¹的卡马西平储备液.

背景溶液: $0.01 \text{ mol} \cdot \text{L}^{-1} \text{ NaN}_3$,用于灭菌以防止卡马西平及腐殖酸的生物降解.

表 1 卡马西平的各类理化性质[17]

CAS	分子式	相对分子质量 $(\mathit{M}_{\mathrm{r}})$	pK_a	溶解度(25℃) /mg·L ⁻¹	$\lgK_{\rm ow}$	亨利常数 /kPa
298 ~464	$\rm C_{15}H_{12}N_2O$	236. 3	13.9	125.0 ± 2	2. 45	1.08E – 10

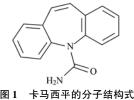


Fig. 1 Molecular structure of carbamazepine

1.2 吸附批实验

溶解性腐殖酸在石英砂上的吸附批实验(表2):称取5g石英砂于聚丙烯离心管中,加入35mL含系列浓度(5、10、20、40、60、80 mg·L⁻¹)HA、0.01 mol·L⁻¹ NaN₃ 的混合溶液.在 25%, 175r·min⁻¹条件下平置振荡吸附150h后取出,于3 500r·min⁻¹离心机离心 20 min,取上清液测定 HA 的浓度,并进行透析分离.

卡马西平存在时溶解性腐殖酸在石英砂上的吸附批实验(表 2): 经本研究发现,溶液中的 CBZ 和 HA 并未发生沉淀反应,不会对后续吸附实验产生影响. 称取 5 g 石英砂于聚丙烯离心管中,各加入 35 mL 包含2 mg·L⁻¹ CBZ、0.01 mol·L⁻¹ NaN₃、系列浓度(0、5、10、20、40、60、80 mg·L⁻¹) HA 的混合溶液. 在 25°C,175 r·min $^{-1}$ 条件下平置振荡吸附表2 实验控制条件

Table 2 Experimental control conditions

	Tubic 2	2 Experimental control conditions			
样品编号	介质		CBZ 浓度	NaN_3	рН
1十四3冊 分		$/\text{mg} \cdot \text{L}^{-1}$	$/\text{mg} \cdot \text{L}^{-1}$	$/\text{mol} \cdot L^{-1}$	рп
S-5		5	0		
S-10		10	0		
S-20	石英砂	20	0	0.01	7
S-40	5 g	40	0	0. 01	/
S-60		60	0		
S-80		80	0		
SC-0		0	2		
SC-5		5	2		
SC-10	プラセア ル	10	2		
SC-20	石英砂 5 g	20	2	0.01	7
SC-40	Эg	40	2		
SC-60		60	2		
SC-80		80	2		

150 h 后取出,于3 500 r·min⁻¹离心机离心 20 min,取上清液测定 HA 和 CBZ 的浓度,并进行透析分离.

1.3 透析分离方法

- (1)卡马西平存在时腐殖酸吸附实验的上清液透析分离 选用 M_r 1000和 M_r 3500的滤膜进行上清液的透析分离. 将 SC-5~SC-80 共 6 组吸附实验吸附平衡后的上清液置于截留相对分子质量3500的透析袋内, 外套截留相对分子质量1000的透析袋, 扎口, 将其浸泡在去离子水烧杯内, 如图2 所示进行透析分离, 48 h 后取样分别测 C1、C2、C3 中 CBZ 及 HA 的浓度.
- (2)腐殖酸吸附实验的上清液透析分离 为探究不同相对分子质量腐殖酸与矿物质的亲和力,选用1000和3500的滤膜进行上清液的透析分离.将 S-5~S-80 共6组吸附实验吸附平衡后的上清液置于截留相对分子质量3500的透析袋内,外套截留相对分子质量1000的透析袋,扎口,将其浸泡在去离子水烧杯内,如图2所示进行透析分离,48h后取样分别测C1、C2、C3中HA的浓度.

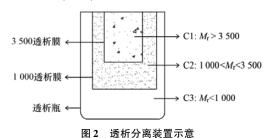


Fig. 2 Dialysis operation chart

(3)腐殖酸原液的透析分离 为掌握腐殖酸原液的大、小分子量组分的构成,选用3500和14000的滤膜进行腐殖酸原液的透析分离实验.将配置好的浓度为700 mg·L⁻¹的腐殖酸原液置于截留相对分子质量14000的透析袋内,外套截留相对分子质量3500的透析袋,扎口,将其浸泡在去离子水烧杯内,进行透析分离,48h后取样分别测C1、C2、C3中腐殖酸的浓度.

1.4 测试方法

- (1)卡马西平检测 采用设备为高效液相色谱(型号: GC2010,日本岛津公司). 色谱柱: Agilent XAD-C18 色谱柱(4.6 mm×150 mm); 流动相乙腈 60%,超纯水 40%;流速 1.0 mL·min⁻¹;柱温 30℃,进样量 10 μL. 卡马西平在 5~200 μg·L⁻¹和 0.2~2 mg·L⁻¹时浓度与色谱峰面积有良好的线性 关系,保留时间为 4.5 min. 仪器检出限为 3.9 μg·L⁻¹,定量限为 15.6 μg·L⁻¹.
- (2)紫外-可见吸收光谱测定 检测仪器为双光束紫外-可见分光光度计. 将透析分离后液体用仪器扫描,扫描波长为 200~800 nm,步长 0.5 nm,以超纯水做参比,中高速扫描. 测定各波长吸光度用于推求吸收系数 a_{355} 、SUVA₂₅₄以及吸收光谱斜率比值 S_{R} .
- (3) 红外光谱测定 采用设备为 Magna-IR750 型傅立叶变换红外光谱仪(美国 Nicolet 公司),按1:200的样品 KBr 比,采用压片法分析测定.测试单位:北京大学分析测试中心.

1.5 数据处理

1.5.1 吸附等温线

$$Q_{\rm e} = QK_{\rm L}c_{\rm e}/(1 + K_{\rm L}c_{\rm e})$$

式中, Q_e 是吸附平衡时,单位质量石英砂粉末对腐殖酸的吸附量 $(mg\cdot kg^{-1})$; c_e 是当体系达到吸附平衡后,溶液中腐殖酸的平衡浓度 $(mg\cdot L^{-1})$;Q 是假设吸附质在吸附剂表面形成单分子层吸附时的最大吸附量 $(mg\cdot kg^{-1})$; K_L 为吸附平衡常数.

1.5.2 吸收系数 a₃₅₅

表示大分子生色基团如醛酮等的强弱,可使用 紫外-可见分光光度计测定吸光度并计算^[18]. 计算 公式如下:

$$a_{\lambda} = 2.303 A_{\lambda}/l$$

式中, a_{λ} 是波长 λ 处的吸收系数(m^{-1}); A_{λ} 为吸光度; l 为光程路径(m),即紫外-可见分光光度计所使用的石英比色皿的宽度,本实验中 l 为 0.01~m.

1.5.3 腐殖酸 TOC 的计算

本研究采用 TOC 计算值,有研究发现使用紫外-可见分光光度计测定的吸收系数 a_{355} 与总有机碳测定仪测定的 TOC 值存在良好的线性关系^[19],本实验测定了 HA 初始浓度(5、10、20、40、60、80 mg·L⁻¹)下 TOC 与 a_{355} 的值,得出 TOC 与 a_{355} 之间存在以下关系即:

TOC = 0. 104 2
$$a_{355}$$
 + 3. 169 1

本研究中推求吸收光谱斜率比值 S_{R} 、SUVA₂₅₄ 时所使用的 TOC 值均用该方法计算.

由上述可知, a_{355} 与 TOC 两者正相关. 为探究 石英砂吸附 HA 前后大分子发色团总量的变化,现定义 HA 大分子发色团的拟总量为 M_{355} (L·m⁻¹), M_{355} 可以通过波长 355 nm 处的吸收系数 a_{355} 乘以体积 V(L)来量化,即:

$$M_{355} = a_{355} \times V$$

1.5.4 吸收光谱斜率比值 S_{R}

表征有机质的相对分子质量的大小,与有机质相对分子质量成反比,可使用紫外-可见分光光度计测定吸光度并计算[18]. 计算公式如下:

$$a(\lambda) = a(\lambda_0) \exp[-S(\lambda - \lambda_0)]$$

$$S_R = S_{(275 \sim 295)} / S_{(350 \sim 400)}$$

式中, S 是吸收光谱斜率 (nm^{-1}) ; λ_0 参考波长 (nm), 本研究中在 275 $nm \sim 295$ nm 的波长中选择 280 nm 为参考波长, 350 $nm \sim 400$ nm 的波长中选择 385 nm 为参考波长.

1.5.5 SUVA₂₅₄

表征有机质芳香性强弱,使用紫外-可见分光 光度计测定吸光度并计算^[18]. 计算公式如下:

$$SUVA_{254} = a_{254}/TOC$$

式中, a_{254} 为 254 nm 波长处的吸收系数; TOC 为溶解性有机碳($mg \cdot L^{-1}$).

与 M_{355} 类似,HA 大分子芳香性物质的拟总量 $M_{254}(\text{L·m}^{-1})$ 可以通过波长 254 nm 处的吸收系数 a_{254} 乘体积 V(L)来量化:

$$M_{254} = a_{254} \times V$$

1.5.6 透析分离计算

由于自由态物质可以通过透析袋扩散,因此当透析达到平衡时,透析袋内外自由态物质的浓度相同,通过结合透析袋内外物质浓度的差异来计算结合态物质的浓度. 3 种不同相对分子质量的 HA 组分或与各相对分子质量 HA 结合的 CBZ 的定量计算方法遵循以下方程:

$$M_r < 1000$$
:
 $M_3 = c_3 \times (V_1 + V_2 + V_3)$
 $f_3 = M_3/M_L \times 100\%$
 $1000 < M_r < 3500$:
 $M_2 = (c_2 - c_3) \times (V_1 + V_2)$
 $f_2 = M_2/M_L \times 100\%$
 $M_r > 3500$:
 $M_1 = (c_1 - c_2) \times V_1$
 $f_1 = M_1/M_L \times 100\%$
残留率(%) = $\left(1 - \frac{M_1 + M_2 + M_3}{M_L}\right) \times 100$

式中, c_1 、 V_1 、 M_1 为 M_r = 3 500透析袋内 HA 或 CBZ 的浓度、体积和质量; c_2 、 V_2 、 M_2 是 M_r 1 000与 M_r 3 500透析袋之间 HA 或 CBZ 的浓度、体积和质量; c_3 、 V_3 、 M_3 是 M_r 1 000透析袋外 HA 或 CBZ 的浓度、体积和质量; M_L 是透析前溶液中的 HA 或卡马西平的总质量.

2 结果与讨论

2.1 腐殖酸的分级表征

为分析不同相对分子质量腐殖酸所含官能团的 差异, 使用3 500和14 000的透析袋进行腐殖酸原液 的透析分离实验,将其划分为大分子量 HA(相对分 子质量大于14000)、中间分子量 HA(相对分子质 量介于3 500~14 000)和小分子量 HA(相对分子质 量小于3500),并进行红外光谱与紫外-可见吸收光 谱的表征. 由图 3 红外光谱的表征结果可以看出, 大分子量 HA 在3 430 cm -1 处与小分子量和中间分 子量 HA 相比有更明显的吸附带, 归属为—OH 的 伸缩振动峰; 在1 564 cm⁻¹和1 373 cm⁻¹有两处尖 峰,分别代表芳烃 C ==C 骨架振动和 δ-CH 脂肪烃 类中—CH₃、—CH₂的伸缩振动^[20],且脂肪族和芳 香族结构随相对分子质量的减小而变弱. 由此说明 大分子量 HA 相比于小分子量 HA 和中间分子量 HA 含有更多的羟基、芳香烃和脂肪烃. 而小分子 量 HA 则在 616 cm⁻¹和1 104 cm⁻¹有两处明显的尖

峰,616 cm⁻¹是 COO⁻的扭转振动,而1 104归因于醇和碳水化合物(C—O 伸缩),说明小分子量 HA 含有更多的醇和羧基,以亲水物质为主.

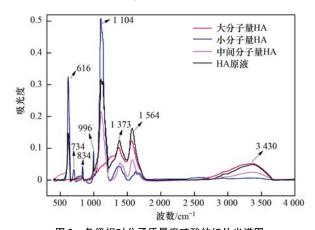


图 3 各级相对分子质量腐殖酸的红外光谱图

Fig. 3 FTIP of HA with different molecular weights

为进一步分析验证不同相对分子质量 HA 的结构差异,对不同相对分子质量下不同浓度 HA 进行了紫外-可见光谱的测定(如图 4),其中, f_{355} 、 f_{254} 分别代表高分子团物质以及芳香性物质拟总量的百分比.结果表明大分子量 HA($M_r > 3500$)与分子量较低的 HA 相比芳香性组分以及高分子团物质更多. Nebbioso 等[21] 也得出了类似的结论,发现疏水性结构占主导的腐殖酸主要分布在大尺寸组分中,而亲水性占主导的腐殖酸分子则存在于较小尺寸组分中,

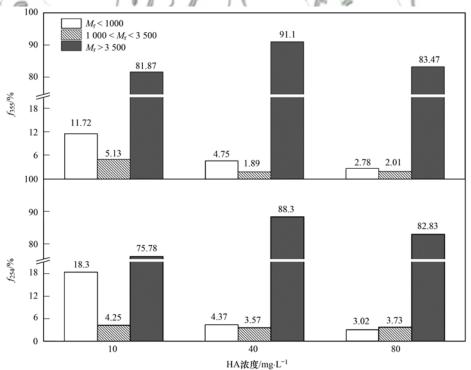


图 4 高分子团物质以及芳香性物质拟总量的百分比

Fig. 4 Percentage of macromolecular matter and aromatic substances

且直链和芳香结构多见于前者,而其它不规则结构的分子(能相互连结成较大尺寸的聚集体)则多出现在后者.随着 HA 初始浓度的增加,各相对分子质量HA 的芳香组分和高分子生色团的质量基本呈现增加趋势,但在小分子量 HA 中,质量占比逐渐降低,这表明高浓度下的 HA 分子更趋向于关联和聚集,从而阻碍透析分离过程,这也与 HA 浓度越高其膜截留量越高有关,当 HA 的浓度由 10 mg·L⁻¹升高至 80 mg·L⁻¹时,残留率由 1.6% 升高至 10.4%.

2.2 腐殖酸与卡马西平的结合

为探究 HA 与 CBZ 的结合方式,进行了 40 mg·L⁻¹HA 和 40 mg·L⁻¹HA 与 2 mg·L⁻¹ CBZ 混合溶液的红外光谱的表征,如图 5 所示. HA 与 CBZ 结合后的红外光谱在各波长出现了不同程度的位移,见表 3,其中吸收峰向低波数移动是红移,反之则是蓝移. CBZ 分子包括了亲水区与疏水区两部分,亲水区主要包括—C =Ο 和—NH₂ 基团;疏水区主要包括二苯乙烯基团.由于二苯乙烯基团的疏水性高、相对分子质量大、碳含量高,使得疏水作用成为 CBZ 结合 HA 的重要力量^[22].有研究表明,疏水性有机污染物与溶解有机物的分配主要通过疏水相互作用^[23,24].也有研究报指出,CBZ-DOM 之间的作用也包括发生在羰基或氨基基团上的氢键和CBZ 苯环基团上 π—π 键^[10].根据红外光谱的表征结果,推测在本研究中,HA与CBZ的结合主要通

过以下两种形式: CBZ 的氨基与 HA 极性官能团的结合; CBZ 疏水基团与 HA 脂肪族与芳香族的疏水作用.由 2.1 节可知, HA 的极性官能团主要存在于小分子量 HA 中,而脂肪族、芳香族等疏水性官能团主要分布在大分子量 HA 中.通过卡马西平在各相对分子质量级分中的分布可知, CBZ 在体系中主要以小分子状态或与 HA 中小分子组分结合的状态存在.由此可以推测 HA 极性官能团与 CBZ 的作用是两者结合最重要的方式.

图 5 HA、HA 与 CBZ 混合溶液的红外光谱图 Fig. 5 FTIP of HA and mixed solution of HA and CBZ

表 3 HA 与 HA + CBZ 混合溶液的红外光谱吸收峰位移的变化1)

Table 3 Shift of FTIR spectra absorbance peak for HA and HA + CBZ complex

波长/cm ⁻¹	化学键	官能团	峰位移
3 391	NH_2	芳香胺	红移
3 301	NH_2	脂肪胺	_
2 105	C = C / C = C = C	共轭炔烃/碳碳双键	_
1 630 ~ 1 545	C ==C	芳香环	蓝移
1 400 ~ 1 440	0—H/C—0	醇类、羧酸类、酚类	蓝移
113	C—N	脂肪胺	红移

1)"一"表示吸收峰没有发生位移

2.3 卡马西平对腐殖酸在石英砂上吸附的影响

2.3.1 腐殖酸在石英砂上的吸附机制

采用线性吸附模型、Freundlich模型以及 Langmuir模型对石英砂吸附腐殖酸的吸附曲线进行 了拟合,通过对比分析发现 Langmuir等温吸附方程 的拟合效果最好.由表2所示的两组批实验的结果 可得,不论吸附过程是否有卡马西平的存在, Langmuir等温吸附方程均能很好地拟合石英砂对腐 殖酸的吸附模式,如图6所示,相关参数见表4.这 说明腐殖酸在石英砂上的吸附过程更符合单分子层吸附形式.对比两种条件,发现有卡马西平条件下Langmuir方程中的最大吸附量 Q 变小,即卡马西平的存在减小了石英砂对腐殖酸的吸附量.

表 4 石英砂对腐殖酸吸附等温线模型参数

Table 4 Parameters in adsorption isotherms of HA on quartz sand

条件	Q/mg⋅kg ⁻¹	$K_{\rm L}/{ m L} \cdot { m mg}^{-1}$	R^2
无卡马西平	22. 03	0. 017	0. 958
有卡马西平	14. 14	0. 045	0. 938

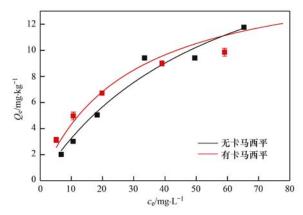


图 6 石英砂吸附腐殖酸的 Langmuir 等温模型

Fig. 6 Langmuir isotherms of HA onto quartz sand

为探究吸附前后腐殖酸官能团的变化,对石英 砂吸附腐殖酸前后上清液进行了红外光谱的表征, 如图 7. 吸附后红外光谱图中的吸收峰发生了不同 程度的位移, 见表 5, 其中吸收峰向低波数移动是 红移, 反之则是蓝移. 实验发现, HA 的芳香族类和 脂肪族类、羧酸以及酚类等均参与了反应. 芳香族 和脂肪族作为 DOM 的主要疏水性结构可通过疏水 作用结合于介质的表面活性吸附点位. 李烜等[26] 的研究发现, 石英砂吸附腐殖酸后, X 光电子能谱 图上出现新的吸收峰, 归为 O-Si-C 键, 该键中 硅原子的氧化态低于 SiO, 结构中的硅原子的氧化 态,被称为中间氧化态(SiO_{x<2}),由于其具有氧化 和还原性,被认为是主要活性吸附点位. 由此推测 疏水作用可能发生于该类活性吸附点位. 此外 1400~1400 cm⁻¹波长处发生了红移,说明羧基和 羟基等官能团作为 HA 的主要活性基团也参与了反 应. SiO, 在液相中易形成硅烷醇基团(Si—OH), 可 与羧基和酚羟基等官能团进行交换配位反应,形成 新的 Si-0-(0=) C 键^[26]. 因此, 本研究中 HA 与石英砂的结合主要通过两种方式; 一是 HA 中的 羟基、羧基与石英砂表面硅烷醇基团发生交换配位 反应: 二是 HA 的大分子疏水物质与石英砂表面活 性吸附点位的疏水结合.

表 5 HA 吸附前后的红外光谱吸收峰位移的变化

Table 5 Change in FTIR spectra absorbance peak shift for supernatant before and after humic acid adsorption

波长/cm ⁻¹	化学键	官能团	峰位移
3 392	NH_2	芳香胺	红移
2 105	$C = C \setminus C = C = C$	共轭炔烃/碳碳双键	红移
1 630 ~ 1 545	C = C	芳香环	红移
1 400 ~ 1 440	OH/C-O	醇类、羧酸类、酚类	红移
1 132	C—N	脂肪胺	蓝移
638	= C−H	炔烃	红移

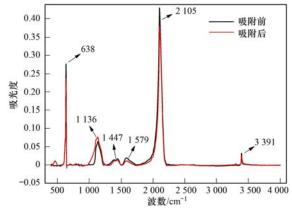


图 7 腐殖酸吸附前后的红外光谱图

Fig. 7 FTIP of humic acid before and after being absorbed

2.3.2 卡马西平的存在对腐殖酸吸附行为的影响

为探究石英砂对不同相对分子质量 HA 吸附亲 和力的差异, 进行了 S_B 的表征与分析. S_B 代表有 机质相对分子质量的大小, 当有机质的相对分子质 量越大时, S_R 值越低. 当卡马西平不存在时, 如图 8(a), 低初始浓度的腐殖酸吸附平衡溶液中 S_R 值 明显高于初始值;随着腐殖酸浓度的提高, S_{R} 与初 始值基本相等, 这说明 HA 的大分子量部分吸附到 了矿物上. 这种现象可以用腐殖酸大分子部分优先 被吸附, 剩下小分子部分在溶液中来解释. 先前研 究也报道了类似的结果, 即大分子量 HA 分子与土 壤的优先结合[22], 大分子量 HA 含有较多的疏水基 团如脂肪族和芳香族成分(如图2),疏水性强,形 成的颗粒大, 熵效应也强, 这些都有利于大分子腐 殖酸部分被矿物吸附[27]. 为了进一步验证不同相 对分子质量 HA 的吸附差异, 将石英砂吸附腐殖酸 前后上清液进行透析、计算、对比, 见图 9(a) 中无 卡马西平条件下 M355 的变化值, 其中拟总量差 $(L \cdot m^{-1}) = 吸附前拟总量 - 吸附后拟总量. 随着$ HA浓度的增加,吸附后各级相对分子质量 HA中 M_{35} 均有所降低,但降低程度不一,说明石英砂可 以对各相对分子质量 HA 中的高分子发色团进行吸 附, 但对不同相对分子质量 HA 中的该组分吸附亲 和力有差异, 其中 HA 大分子量部分(M_c > 3500) M_{355} 的变化量最大,这与 $S_{\rm R}$ 的表征分析结果相一 致, 进一步证实了 HA 的大分子量组分与矿物表面 有更高的亲和力.

当卡马西平存在时,吸附后上清液中 S_R 值始 终低于吸附前的初始值,说明 HA 的小分子量部分 吸附到了矿物上. 为验证实验结果,对吸附批实验中 SC-10、SC-40、SC-80 的上清液进行了透析分离,

1.2

比较吸附前后 M_{355} 变化,见图 9(b) 中有卡马西平条件下 M_{355} 的变化。由计算结果可以看出,吸附后大分子量 HA 部分的 M_{355} 增加,而小分子量与中间分子量部分表现为减少,进一步验证了上述推测,即当卡马西平存在时,石英砂优先吸附 HA 中的小分子组分。此结果与无卡马西平时,石英砂优先吸附大分子量组分的结论相反[如图 9(a)]。原因在于当溶液中有卡马西平时,绝大多数卡马西平分子存在于 M_r < 1 000 的分数内[如图 10(b)],因此CBZ 与 HA 的结合作用大部分发生在小分子量 HA

中,该结论在 2.2 节中也有证实;再者大分子量 HA 和 CBZ 之间的相互作用如疏水作用和范德华力较弱,在透析过程中这些弱相互作用易被破坏.而一些强相互作用例如氢键和 π—π 键,依然存在于小分子量亲水性 HA 和 CBZ 之间. 因此,结合后的 CBZ 与小分子量 HA 吸附于矿物,而上清液中的大分子量部分被留在了溶液中. 此外,大分子量 HA 中的拟总量差出现了负值,推测其原因在于,CBZ 的存在使得 HA 小分子量部分趋向于聚集和关联,在溶液中形成了大分子聚集体.

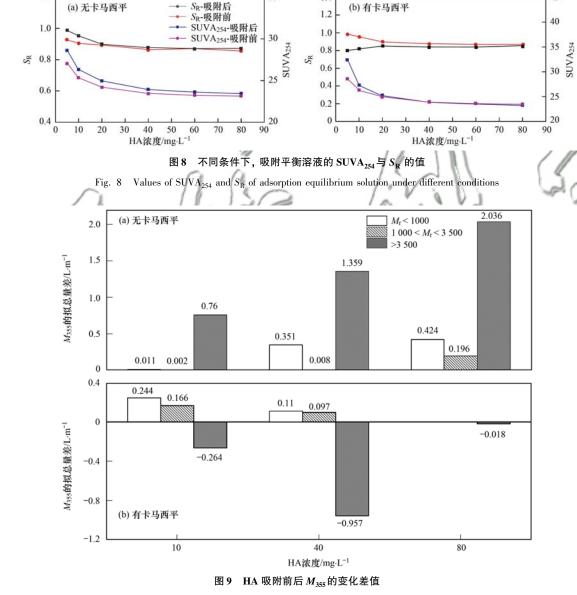
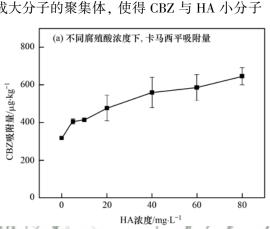



Fig. 9 Change of M_{355} before and after HA adsorption onto quartz sand

为探究石英砂对腐殖酸不同官能团吸附亲和力的差异,对石英砂吸附腐殖酸前后上清液的SUVA₂₅₄进行了表征,如图 8. SUVA₂₅₄的值可反映

水中芳香族有机物的含量、水中有机物的芳香构造 化程度^[28].实验结果显示,当 CBZ 不存在时,腐殖 酸吸附平衡溶液中 SUVA,54 值明显高于初始值,表 明腐殖酸类物质芳香族含量的增加, 芳构化程度提高. 由此推测此石英砂对腐殖酸不同官能团的吸附有所不同, 与芳香性腐殖酸相比, 脂肪性腐殖酸的疏水性更强, 石英砂更倾向于优先吸附腐殖酸中的脂肪性组分, 而芳香性组分更多地留在了溶液之中. 当 CBZ 存在时, 吸附平衡溶液的 SUVA₂₅₄依然高于初始值, 原因在于当 CBZ 存在时, 石英砂优先吸附 HA 中的小分子量组分, HA 中的疏水性大分子更多地留在了上清液中, 再者与芳香性腐殖酸相比, 脂肪性腐殖酸的疏水性更强, 石英砂可能更倾向于优先吸附腐殖酸中的脂肪性组分, 而芳香性组分更多地留在了溶液之中. 然而随着 HA 初始浓度浓度的升高, SUVA₂₅₄与初始值基本相等, 原因在于HA 浓度的升高使其小分子部分趋向于关联和聚集, 形成大分子的聚集体, 使得 CBZ 与 HA 小分子

之间的作用减弱.

2.4 腐殖酸对卡马西平在石英砂上的吸附影响

当未加入 HA 时, CBZ 在石英砂上存在一定量的吸附,为 318.14 μg·kg⁻¹,如图 10(a).由 2.3 节可知,CBZ 是含有极性官能团的疏水性有机物,亲水区主要包括—C —O 和—NH₂ 基团,疏水区主要包括二苯乙烯基团.因此石英砂吸附 CBZ 可能通过疏水作用,范德华力和极性相互作用,如氢键、π—π 键等^[29]. HA 的加入,促进了 CBZ 在石英砂上的吸附. 2.2 节中证实,CBZ 可以通过氨基与 HA 极性官能团的结合或疏水基团与 HA 脂肪族与芳香族的疏水作用.而 HA 又可以吸附在石英砂上,因此,石英砂中吸附增加的卡马西平可归因于部分HA 分子与 CBZ 结合后共吸附或累积吸附于石英砂上.

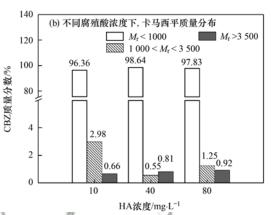


图 10 不同腐殖酸浓度下,卡马西平的吸附量与质量占比

Fig. 10 Adsorption amount and mass distribution of CBZ for various concentrations of HA

加入腐殖酸后卡马西平的吸附增加量并不是很大,当 HA 的初始浓度达到 80 mg·L⁻¹时, CBZ 的吸附量是 645.90 μg·kg⁻¹. 其原因在于无卡马西平时,石英砂主要通过疏水作用吸附 HA 中的大分子量部分,而卡马西平的存在使石英砂转而吸附 HA中的小分子量部分,且 CBZ 主要通过极性作用结合于 HA 的小分子,使得 CBZ 最终的吸附增加量并不大.

在 DOM-CBZ-矿物系统内存在许多相互作用机制. CBZ 与 HA 之间存在相互作用使得腐殖酸在石英砂上的吸附由于卡马西平的是否存在而产生了差异. 当无卡马西平时, 石英砂优先吸附 HA 中的疏水性大分子, 吸附机制主要包括疏水作用与交换配位反应. 而当卡马西平存在时, 石英砂则主要吸附HA 中的小分子部分. CBZ 与 HA 之间的相互作用也使得 CBZ 在石英砂上的吸附量发生变化. 当 HA 不存在时, 卡马西平可以通过疏水作用, 范德华力

和极性相互作用使其在石英砂上存在一定量的吸附. 当加入腐殖酸后, CBZ 的吸附量随 HA 浓度的增加而增加,原因在于 CBZ 与 HA 结合形成复合体后可以共吸附或累积吸附到矿物上. 因此由实验结果推测卡马西平在石英砂上的吸附分为两个阶段. 第一阶段,一部分卡马西平是与石英砂直接进行相互作用而被吸附下来,另一部分则与腐殖酸相结合形成 HA-CBZ 复合体;第二阶段,这部分 HA-CBZ 复合体与石英砂相结合,使得这些卡马西平被间接结合到介质颗粒上.

3 结论

(1)腐殖酸透析及红外光谱表征结果表明,相对分子质量大于14 000的 HA 含有更多的羟基、芳香烃和脂肪烃,以疏水物质为主;而相对分子质量小于3 500的 HA 含有更多的醇和羧基,并以亲水物质为主. CBZ 与 HA 的结合主要通过氨基与小分子

量 HA 中的极性官能团的结合, 或疏水基团与大分 子量 HA 中脂肪族与芳香族的疏水作用.

- (2)由红外光谱结果证实: HA 与石英砂的结合主要通过 HA 中的羟基与羧基与石英砂表面硅烷醇基团发生交换配位反应; 以及 HA 的大分子疏水物质与石英砂表面活性吸附点位的疏水结合, 且石英砂倾向于吸附 HA 中的脂肪性组分, 芳香性组分更多地留在了溶液之中. 加入 CBZ 后腐殖酸在石英砂上的吸附由主要吸附 HA 中的疏水性大分子转向吸附 HA 中的小分子部分, 使得 HA 的最大吸附量减小.
- (3) HA 对 CBZ 在石英砂上的吸附有所影响. CBZ 可以通过疏水作用, 范德华力和极性相互作用使其在石英砂上存在一定量的吸附. 但加入 HA 后, HA 和 CBZ 可共吸附或累积吸附在矿物使得 CBZ 的吸附量随 HA 浓度的升高而增大. 由实验结果推测 CBZ 在石英砂上的吸附分为两个阶段, 在第一阶段, 一部分 CBZ 是与石英砂直接进行相互作用而被吸附下来, 另一部分 CBZ 与腐殖酸相结合形成 HA-CBZ 复合体; 在第二个阶段, 这部分 HA-CBZ 复合体通过共吸附或累积吸附使 CBZ 被间接结合到介质颗粒上.

参考文献:

- [1] 王樱凝, 崔迪, 庞长泷, 等. 水中 PPCPs 的污染现状及其控制技术研究进展[J]. 中国给水排水, 2015, **31**(24): 25-29. Wang Y N, Cuí D, Pang C L, *et al.* Pollution status and control technologies of pharmaceuticals and personal care products: review[J]. China Water & Wastewater, 2015, **31**(24): 25-29.
- [2] 温智皓, 段艳平, 孟祥周, 等. 城市污水处理厂及其受纳水体中5 种典型 PPCPs 的赋存特征和生态风险[J]. 环境科学, 2013, **34**(3): 927-932.
 - Wen Z H, Duan Y P, Meng X Z, et al. Occurrence and risk assessment of five selected PPCPs in municipal wastewater treatment plant and the receiving water $[\ J\]$. Environmental Science, 2013, 34(3): 927-932.
- [3] 王珏,黄满红,张翠翠,等.3种正渗透膜对水中卡马西平的截留[J].环境工程学报,2017,11(1):197-204. Wang J, Huang M H, Zhang C C, et al. Carbamazepine rejection in water by three kinds of forward osmosis membranes [J]. Chinese Journal of Environmental Engineering, 2017, 11 (1):197-204.
- [4] 杨悦锁, 王园园, 宋晓明, 等. 土壤和地下水环境中胶体与 污染物共迁移研究进展[J]. 化工学报, 2017, **68**(1): 23-36. Yang Y S, Wang Y Y, Song X M, *et al.* Co-transport of colloids

and facilitated contaminants in subsurface environment [J]. CIESC Journal, 2017, **68**(1): 23-36.

[5] Conte P, Abbate C, Baglieri A, et al. Adsorption of dissolved organic matter on clay minerals as assessed by infra-red, CPMAS ¹³C NMR spectroscopy and low field T₁ NMR relaxometry [J].

- Organic Geochemistry, 2011, 42(8): 972-977.
- [6] Księzopolska A, Pazur M. Surface properties of bentonite and illite complexes with humus acids[J]. Clay Minerals, 2011, 46 (1): 149-156.
- [7] Alekseeva T V, Zolotareva B N. Fractionation of humic acids upon adsorption on montmorillonite and palygorskite [J]. Eurasian Soil Science, 2013, 46(6): 622-634.
- [8] 张立超,包先明,余福波,等.腐殖质在蛭石上的吸附特性 [J].生态与农村环境学报,2014,30(3):381-387. Zhang L C, Bao X M, Yu F B, et al. Mechanisms of humus adsorption on vermiculite [J]. Journal of Ecology and Rural Environment, 2014,30(3):381-387.
- [9] Wang K J, Xing B S. Structural and sorption characteristics of adsorbed humic acid on clay minerals [J]. Journal of Environmental Quality, 2005, 34(1): 342-349.
- [10] Ruiz S H, Wickramasekara S, Abrell L, et al. Complexation of trace organic contaminants with fractionated dissolved organic matter; implications for mass spectrometric quantification [J]. Chemosphere, 2013, 91(3); 344-350.
- [11] Zou Y H, Zheng W. Modeling manure colloid-facilitated transport of the weakly hydrophobic antibiotic florfenicol in saturated soil columns [J]. Environmental Science & Technology, 2013, 47(10): 5185-5192.
- [12] Persson Y, Hemström K, Öberg L, et al. Use of a column leaching test to study the mobility of chlorinated HOCs from a contaminated soil and the distribution of compounds between soluble and colloid phases [J]. Chemosphere, 2008, 71 (6): 1035-1042.
- [13] Ilina S M, Drozdova O Y, Lapitskiy S A, et al. Size fractionation and optical properties of dissolved organic matter in the continuum soil solution-bog-river and terminal lake of a boreal watershed [J]. Organic Geochemistry, 2014, 66: 14-24.
- [14] Specht C H, Kumke M U, Frimmel F H. Characterization of NOM adsorption to clay minerals by size exclusion chromatography [J]. Water Research, 2000, 34 (16): 4063-4069.
- [15] Chorover J, Amistadi M K. Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces [J]. Geochimica et Cosmochimica Acta, 2001, 65(1): 95-109.
- [16] Zhang J H. Influence of dissolved organic matter on sorption and desorption of 1, 2, 4-trichlorobenzene and 1, 2, 4, 5tetrachlorobenzene onto wood char [J]. Soil and Sediment Contamination: An International Journal, 2016, 25(2): 210-222.
- [17] 张思,何江涛,朱晓婧.有机质胶体对卡马西平在多孔介质中迁移影响模拟实验[J].环境科学,2016,37(12):4651-4661.
 - Zhang S, He J T, Zhu X J. Simulation experiment: effect of organic colloid on carbamazepine transport in porous media [J]. Environmental Science, 2016, 37(12): 4651-4661.
- [18] 何伟,白泽琳,李一龙,等. 溶解性有机质特性分析与来源解析的研究进展[J]. 环境科学学报,2016,36(2):359-372
 - He W, Bai Z L, Li Y L, et al. Advances in the characteristics analysis and source identification of the dissolved organic matter [J]. Acta Scientiae Circumstantiae, 2016, 36(2): 359-372.
- [19] Zhang Y L, Van Dijk M A, Liu M L, et al. The contribution of

- phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes; field and experimental evidence [J]. Water Research, 2009, 43(18): 4685-4697.
- [20] Arjunan V, Anitha R, Thenmozh S, et al. Potential energy profile, structural, vibrational and reactivity descriptors of trans-2-methoxycinnamic acid by FTIR, FT-Raman and quantum chemical studies [J]. Journal of Molecular Structure, 2016, 1113: 42-54.
- [21] Nebbioso A, Piccolo A. Advances in humeomics: enhanced structural identification of humic molecules after size fractionation of a soil humic acid[J]. Analytica Chimica Acta, 2012, 720: 77-90.
- [22] Bai Y C, Wu F C, Liu C Q, et al. Interaction between carbamazepine and humic substances: a fluorescence spectroscopy study [J]. Environmental Toxicology and Chemistry, 2008, 27(1): 95-102.
- [23] Chen W, Liu X Y, Yu H Q. Temperature-dependent conformational variation of chromophoric dissolved organic matter and its consequent interaction with phenanthrene [J]. Environmental Pollution, 2017, 222: 23-31.
- [24] Hernandez-Ruiz S, Abrell L, Wickramasekara S, et al. Quantifying PPCP interaction with dissolved organic matter in aqueous solution; combined use of fluorescence quenching and

- tandem mass spectrometry[J]. Water Research, 2012, **46**(4): 943-954.
- [25] Veiseh M, Zhang M J. Effect of silicon oxidation on long-term cell selectivity of cell-patterned Au/SiO₂ platforms [J]. Journal of the American Chemical Society, 2006, 128 (4): 1197-1203.
- [26] 李烜. 腐殖酸对石英砂滤料表面吸附性能影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.

 Li X. Effect of humic acid on adsorption efficiency of quartz sands media [D]. Harbin: Harbin Institute of Technology, 2007.
- [27] Jagadamma S, Mayes M A, Phillips J R. Selective sorption of dissolved organic carbon compounds by temperate soils[J]. PLoS One, 2012, 7(11): e50434.
- [28] 赵越,魏雨泉,李洋,等. 不同物料堆肥腐熟程度的紫外-可见光谱特性表征[J]. 光谱学与光谱分析, 2015, **35**(4): 961-965.

 Zhao Y, Wei Y Q, Li Y, et al. Using UV-Vis absorbance for
 - Zhao Y, Wei Y Q, Li Y, et al. Using UV-Vis absorbance for characterization of maturity in composting process with different materials [J]. Spectroscopy and Spectral Analysis, 2015, 35 (4): 961-965.
- [29] Qin X P, Liu F, Wang G C, et al. Fractionation of humic acid upon adsorption to goethite: batch and column studies [J]. Chemical Engineering Journal, 2015, 269: 272-278.

HUANJING KEXUE

Environmental Science (monthly)

Vol. 39 No. 5 May 15, 2018

CONTENTS

Estimation of Fine Particle (PM _{2,5}) Emission Inventory from Cooking: Case Study for Shanghai	WANG Hong-li, JING Sheng-ao, LOU Sheng-rong, et al. (1971)
Seasonal Variation and Source Analysis of Water-soluble Inorganic Salts in PM _{2,5} in the Southern Suburbs of Beijing	···· GAO Ya-qin, WANG Hong-li, JING Sheng-ao, et al. (1978)
Characteristics and Source Apportionment of Water-soluble Inorganic Ions in Road Dust PM, a During Spring in Tianiin Using the Out	adrat Sampling Method
Table D. L. College and D. L. College and D. Colleg	ZHAO Jing-qi, JI Ya-qin, ZHANG Lei, et al. (1994)
HONO Pollution Characteristics and Nighttime Sources During Autumn in Guangzhou, China	
Sulfur Sources and Oxidation Pathways in Summer Aerosols from Nanjing Northern Suburbs Using S and O Isotopes	
Methods for Determining and Applications of High-Resolution Vehicle Emission Inventory at County Scale	FAN Shou-bin, GUO Jin-jin, LI Xue-feng (2015)
Characteristics of Polycyclic Aromatic Hydrocarbons Emitted from Typical Industrial Biomass Boilers	LIN Yu-jun, BAI Li, WANG Huan-xiang, et al. (2023)
Research of Parameter Uncertainty for the HSPF Model Under Different Temporal Scales	
Contribution of Nitrogen Sources in Water Sources by Combining Nitrogen and Oxygen Isotopes and SIAR	
Pollution Characteristics and Health Risk Assessment of Volatile Organic Compounds in Baiyangdian Lake	··· GAO Qiu-sheng, ZHAO Yong-hui, JIAO Li-xin, et al. (2048)
Fluorescent Characteristics and Environmental Significance of Particulate Organic Matter in Lake Taihu, China Distribution and Settlement of Microplastics in the Surface Sediment of Yangtze Estuary	LU Wei-wei, YAO Xin, ZHANG Bao-hua, et al. (2056)
Water Chemistry and Characteristics of Dissolved Organic Carbon During the Wet Season in Wulixia Reservoir, SW China	
Bioavailability of Dissolved Organic Carbon in Rivers for Typical Vegetation Types in the Permafrost Regions on the Qinghai-Tibet Pla	ateau
Cl. v.s. (D. 1 10 . M. (DM) 1 1 1 . J. 2 1 . J. 1 1 H. W. 1 . D. 1 H. B.	····· MA Xiao-liang, LIU Gui-min, WU Xiao-dong, et al. (2086)
Characteristics of Dissolved Organic Matter (DOM) and Relationship with Dissolved Heavy Metals in a Peri-urban and an Urban Riv	er
Migration and Transformation of Dissolved Organic Matter in Karst Water Systems and an Analysis of Their Influencing Factors	
Source and Distribution of Dissolved Metal Ions in the Backwater Area of Pengxi River in Three Gorges Reservoir	
Differences in Diffusive Fluxes of Nutrients from Sediment Between the Natural River Areas and Reservoirs in the Lancang River Basi	in
Discourse in the Zandary Total Comment of the Comme	···· WANG Xue CHENG Bao YANG Zheng-ijan et al. (2126)
Nutrient Distribution Characteristics of the Sediment-water System in the Xiangxi River During the Impoundment of TGR	······ SU Oing-ging LIU De-fu II Dag-bin, et al. (2135)
Effects of Submerged Macrophytes on Different Phosphorus Fractions in Overlying Water and Interstitial Water	····· YANG Wen-bin, GAO Shun-feng, WAN Rui, et al. (2145)
Distribution Characteristics and Fluxes of Nitrogen and Phosphorus at the Sediment-water Interface of Yuqiao Reservoir	
Distribution of Phosphorus Fractions in Surface Sediments of Minijang Mainstreams	······ YANG Geng. OIN Yan-wen. HAN Chao-nan. et al. (2165)
Distribution of Phosphorus Fractions in Surface Sediments of Minjiang Mainstreams Nitrate Uptake Kinetics and Correlation Analysis in an Agricultural Drainage Ditch	LI Ru-zhong YIN Oi-he GAO Su-di et al. (2174)
Influencing Factors for Phosphorus Removal by Modified Rio-ceramic Substrates Coated with ZnAl-LDHs Synthesized by Different Mod	diffication Conditions
	VIANC Vana 7HANC Viana line LEI V., at al. (2104)
Removal of Odorants in Drinking Water Using VUV/Persulfate	SUN Xin. SHI Lu-xiao. ZHANG Yi. et al. (2195)
Degradation of OG with Peroxymonosulfate Activated by a MnFe ₂ O ₄ -graphene Hybrid	XIA Wen-jun, LIU Feng, HAO Shang-bin, et al. (2202)
Removal of Odorants in Drinking Water Using VUV/Persulfate Degradation of OG with Peroxymonosulfate Activated by a MnFe ₂ O ₄ -graphene Hybrid Mechanism of As(V) Removal from Water by Lanthanum and Cerium Modified Biochars	LI Jin, ZU Yan-qun, LI Gang, et al. (2211)
Adsorption of Dissolved Organic Matter with Different Relative Molecular Masses on Inorganic Minerals and Its Influence on Carbana	zenine Adsorption Rehavior
Adoption of Dissorted Organic matter with Director Actuative stoccastic matters of the International Conference of	LIANG Yu, HE Jiang-tao, ZHANG Si (2219)
Pollution Characteristics of Organophosphorus Flame Retardants in a Wastewater Treatment Plant Enhanced Coagulation as a Pretreatment for Low Temperature Wastewater	··· SUN Jia-wei, DING Wei-nan, ZHANG Zhan-en, et al. (2230)
Enhanced Coagulation as a Pretreatment for Low Temperature Wastewater	LIU Hai-long, REN Yu-xia, ZHANG Zhong-min (2239)
Operating Characteristics and Fouling Characteristics of a RO Membrane System for Desalination of Dyeing Wastewater	
Optimization of the Nitrogen Removal Performance on the CANON Process in a Biofilm Reactor: From FBBR to MBBR	······ FU Kun-ming, LI Hui, ZHOU Hou-tian, et al. (2256)
Microbial Community Dynamics During Two Sludge Granulation Processes	GAO Jing-feng, ZHANG Li-fang, ZHANG Shu-jun, et al. (2265)
Sludge Conditioning Performance of Polyaluminum, Polyferric, and Titanium Xerogel Coagulants	WANG Xiao-meng, WANG Xin, YANG Ming-hui, et al. (2274)
Effects of Heat and Heat-alkaline Treatments on Disintegration and Dissolved Organic Matter in Sludge	DAI Qin, ZHANG Wen-zhe, YU Pan-ten, et al. (2283)
Effect of Different Ratios of Anaerobic Time and Aeration Time on the Formation of Partial Nitrification Granules	LI Dong, GUO Yue-zhou, CAO Mei-zhong, et al. (2289)
Spatial and Temporal Variation of Mercury in Municipal Sewage Sludge in China	
Characteristics of N ₂ O Release and Influencing Factors in Grass-type and Algae-type Zones of Taihu Lake During Summer	ZHENG Xiao-lan, WEN Shuai-long, Ll Xin, et al. (2306)
Analysis of Greenhouse Gas Emission Characteristics and Their Influencing Factors in the Algae Zone of Lake Taihu	
Dynamics of CO ₂ and N ₂ O in Seasonal Frozen Soil Profiles for a Typical Steppe in Inner Mongolia	
Characteristics of CO ₂ Flux in a Mature Apple (Malus demestica) Orchard Ecosystem on the Loess Plateau	
Effects of Biochar Application Rates on Greenhouse Gas Emissions in the Purple Paddy Soil Short-Term Effects of Different Fertilization Treatments on Greenhouse Gas Emissions from Northeast Black Soil	
Eukaryotic Micro-plankton Community Diversity and Characteristics of Regional Distribution in the Yellow Sea by ITS High-throughpu	
Eukaryotic micro-piankion Community Diversity and Characteristics of Regional Distribution in the Teriow Sea by 115 rugh-unoughpu	
Influence of Different Patterns of Discharge on Microbial Diffusion in Municipal Treated Wastewater	
Impact of Tourism on Bacterial Communities of Karst Underground River: A Case Study from Two Caves in Fengdu, Chongqing	
Diversity of the Microbial Community in Rice Paddy Soil with Biogas Slurry Irrigation Analyzed by Illumina Sequencing Technology	, , , , , , , , , , , , , , , , , , , ,
Effect of Biochar Amendment on Physicochemical Properties and Fungal Community Structures of Cinnamon Soil	
Carbon Metabolism Characteristics of the Karst Soil Microbial Community for Pb-Zn Mine Tailings	
Denitrification Characteristics and Community Structure of Aerobic Denitrifiers from Lake and Reservoir Sediments	
Investigation of the Coupling Mechanism Between Naphthalene Degradation and Denitrification of a Naphthalene Degraded Bacterial C	
The coupling sections of the coupling sections and experimental population and Dentification of a coupling section of the coup	ZHANG Ze-vii WANG Ming-xia CHENG Yong-vi et al. (2438)
Spatial Distribution Study and Pollution Assessment of Pb in Soils in the Xijiang River Drainage of Guangxi	
Effects of Agricultural Activities on Soil Mercury Changes in the Water-Level-Fluctuating Zone of the Three Gorges Reservoir	
Screening and Identification of Arsenic-resistant Endophytic Bacteria from Different Rice Tissues (Oryza sativa L.) in Different Grow	vth Stages ·····
	WANG Bo-xun, WANG Xue-dong, DUAN Gui-lan (2464)
Characteristics of Mercury Transformation in Soil and Accumulation in Rice Plants in an Acidic Purple Paddy Soil Area	
Life Cycle Environmental Impact Assessment on Different Modes of Greenhouse Vegetable Production in the North China Plain	XU Qiang, HU Ke-lin, LI Ji, et al. (2480)
Health Effects of PM _{2.5} Based on Bacterial Toxicity Test and Transcriptional Analysis in Lungs of Mice	
Socio-economic Factors Influencing the Spatial Distribution of PM _{2.5} Concentrations in China; An Exploratory Analysis	