

(HUANJING KEXUE)

ENVIRONMENTAL SCIENCE

第36卷 第11期

Vol.36 No.11

2015

中国科学院生态环境研究中心 主办

科学出版社出版

ENVIRONMENTAL SCIENCE

第36卷 第11期 2015年11月15日

目 次

北京市大气气溶胶中糖类化合物的组成及来源 ······· 梁林林, Guenter Engling, 段凤魁, 马永亮, 程远, 杜祯宇, 贺克斌(3935)
北京大气 $PM_{2.5}$ 与惰性 SiO_2 的生物毒性比较
APEC 期间北京及周边城市 AQI 区域特征及天气背景分析 高庆先,刘俊蓉,王宁,李文涛,高文康,苏布达(3952)
2000~2014 年北京市 SO_2 时空分布及一次污染过程分析 ····································
利用 SPAMS 研究石家庄市冬季连续灰霾天气的污染特征及成因 ····································
·······周静博,任毅斌,洪纲,路娜,李治国,李雷,李会来,靳伟(3972)
长江三角洲夏季一次典型臭氧污染过程的模拟 张亮,朱彬,高晋徽,康汉青,杨鹏,王红磊,李月娥,邵平(3981)
珠江三角洲区域污染分布及其垂直风场特征
珠江三角洲区域污染分布及其垂直风场特征
洱海流域农业用地与人湖河流水质的关系研究
大辽河主要污染源营养盐输入特征 马迎群,张雷,赵艳民,秦延文,潘晓雪,曹伟,刘志超,杨晨晨(4013)
三峡库区大宁河沉积物营养盐时空分布及其与叶绿素的相关性分析 张永生,李海英,任家盈,卢佳(4021)
不同地质背景水库区夏季水-气界面温室气体交换通量研究 ************************************
周丛生物存在下不同水层氧化还原带的分布及其与微生物的关联
MATTER AND THE PROPERTY OF THE
华北低平原区地下水中氟分布特征及形成原因:以南皮县为例 孔晓乐,王仕琴,赵焕,袁瑞强(4051)
某市典型地段地表水及地下水中氟喹诺酮类抗生素分布特征 崔亚丰,何江涛,苏思慧,杨蕾,乔肖翠(4060)
乳山湾邻近海域沉积物中好氧氨氧化微生物分布特征 贺惠,甄毓,米铁柱,张玉,付璐璐,于志刚(4068)
青木关地下河中溶解态甾醇来源及迁移、转化特征
梁作兵,沈立成,孙玉川,王尊波,江泽利,张媚,廖昱,谢正兰,张远瞩(4074)
多环芳烃在岩溶地下河表层沉积物-水相的分配 ································· 蓝家程,孙玉川,肖时珍(4081) 降雨期间岩溶地下河溶解态多环芳烃变化特征及来源解析····································
降雨期间岩溶地下河溶解态多环芳烃变化特征及来源解析
·····································
重庆南山老龙洞地下河系统重金属分布、迁移及自净能力 任坤,梁作兵,于正良,张宇,王蓉,袁道先(4095)
三峡水库消落带植物汞的分布特征 梁丽,王永敏,李先源,唐振亚,张翔,张成,王定勇(4103)
物理和生物组合扰动对底泥微界面过程的影响 王忍,李大鹏,黄勇,刘焱见,陈俊(4112)
物理和生物组合扰动对底泥微界面过程的影响
载银活性炭活化过硫酸钠降解酸性橙 7 王忠明, 黄天寅, 陈家斌, 李文卫, 张黎明(4127)
TiO. 降解油美唑的动力学及活性物质分析
单宁酸铁吸附去除水中无机氡的性能与机制研究 张瑞娜 李琳 刘俊新(4141)
间歇曝气式膜生物反应器对养猪沼液中兽用抗生素的去除特性
·····································
单级和两级串联臭氧-生物活性炭深度处理垃圾渗滤液的比较研究 杜安静, 范举红, 刘锐, 邱松凯, 文晓刚, 陈吕军(4154)
水力停留时间和溶解氧对陶粒 CANON 反应器的影响
氨氮对 AOB 抑制的形态及规律
展氦和 AOB 抑制的形态及处律
同步硝化反硝化耦合除磷工艺的快速启动及其运行特征 冷璐,信欣,鲁航,唐雅男,万利华,郭俊元,程庆锋(4180)
HCO ₃ 对部分亚硝化-厌氧氨氧化联合工艺脱氮效能的影响······················李祥,陈宗姮,黄勇,袁怡,刘忻,张大林(4189)
ABR 耦合 CSTR 一体化工艺好氧颗粒污泥亚硝化性能调控及稳态研究 ····································
·····································
活化过硫酸盐对市政污泥调理效果的影响 … 徐鑫,濮文虹,时亚飞,虞文波,张诗楠,宋健,张昊,何姝,杨昌柱,杨家宽(4202)
温度分化对 APBR 反应器性能及产甲烷菌群落的影响 ························谢海迎,汪鑫,李牧原,阎叙酉,五十岚泰夫,罗锋(4208) 污染场地修复技术筛选方法及应用 ····································
污染场地修复技术筛选方法及应用 白利平,罗云,刘俐,周友亚,颜增光,季发生(4218)
基于 Monte Carlo 模拟的土壤重金属综合风险评价与案例分析 杨阳,代丹,蔡怡敏,陈卫平,侯瑜,杨锋(4225)
大港工业区土壤重金属污染及生态风险评价 张倩,陈宗娟,彭昌盛,李发生,谷庆宝(4232)
缙云山不同土地利用方式对土壤团聚体微生物量碳氮的影响 李增全,江长胜,郝庆菊(4241)
不同秸秆翻埋还田对旱地和水田土壤微生物群落结构的影响 兰木羚,高明(4252)
生草果园土壤微生物群落的碳源利用特征 杜毅飞,方凯凯,王志康,李会科,毛鹏娟,张向旭,王婧(4260)
基于 Monte Carlo 模拟的土壤重金属综合风险评价与案例分析
组即以尽剂对土壤-硫聚系统铅镉转运调控的场现研究
水稻品种及典型土壤改良措施对稻米吸收镉的影响 ····································
水稻品种及典型土壤改良措施对稻米吸收镉的影响
大庆湖泊群水体和淡水鱼中多环芳烃污染特征及生态风险评估 王晓迪 臧淑英 张玉红 王凡 杨兴 左一龙(4291)
覆盖层甲烷氧化动力学和甲烷氧化菌群落结构
覆盖层甲烷氧化动力学和甲烷氧化菌群落结构 邢志林,赵天涛,高艳辉,何芝,杨旭,彭绪亚(4302)阳极内添加阳离子交换树脂提升辊压"三合一"膜电极 MFC 性能 梅卓,张哲,王鑫(4311)应用基于单克隆抗体的免疫传感器检测环境中的芘和苯并芘 李鑫,乔琰,钟国祯(4319)
应用其干单方路扩休的免疫传咸器检测环谙中的芯和茉并芯
《环境科学》征订启事(4224) 《环境科学》征稿简则(4318) 信息(4080,4173,4290,4301)
*アークヒイイトナ/ 皿り口芋(サ44サ/ *アータムイヤトナ/ 皿间切り(サ310 / 一 同心(4000 ,41/3 ,44クU ,4301 /

基于 Monte Carlo 模拟的土壤重金属综合风险评价与 案例分析

杨阳1,2,代丹3,蔡怡敏1,2,陈卫平1*,侯瑜4,杨锋4

(1.中国科学院生态环境研究中心, 北京 100085; 2.中国科学院大学, 北京 100049; 3.中国环境科学研究院, 北京 100012; 4.陕西师范大学旅游与环境学院,西安 710062)

摘要:基于不确定性理论,将 Monte Carlo 模拟计算应用到土壤重金属风险评价中,构建了生态风险和健康风险的随机不确定模型,结合多元统计方法进行实例研究.结果表明,研究区土壤 Cd、Co和 Cr污染水平较高,主要富集在建矿时间较长的工业园区;综合单因子指数和综合风险因子指数评价显示土壤重金属主要为轻度污染(相应概率分别为53.2%和55.6%);手-口摄人是研究区土壤重金属暴露的主要途径,Cr为主要致癌因子;儿童承担的健康风险较高,其非致癌风险指数分别为成人的5.0倍(手-口摄人途径)和8.2倍(皮肤暴露途径),两种暴露途径下其致癌风险指数均高于 USEPA 推荐的安全水平.

关键词: Monte Carlo 分析; 生态风险; 健康风险; 多元统计; 重金属

中图分类号: X820.4 文献标识码: A 文章编号: 0250-3301(2015)11-4225-07 **DOI**: 10.13227/j. hjkx. 2015. 11.038

Comprehensive Risk Assessment of Soil Heavy Metals Based on Monte Carlo Simulation and Case Study

YANG Yang^{1,2}, DAI Dan³, CAI Yi-min^{1,2}, CHEN Wei-ping^{1*}, HOU Yu⁴, YANG Feng⁴

(1. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Chinese Research Academy of Environmental Sciences, Beijing 100012, China; 4. College of Tourism and Environment, Shaanxi Normal University, Xi'an 710062, China)

Abstract: Based on the stochastic theory, the Monte Carlo simulation was introduced in ecological risk assessment and health risk assessment. Together with the multi-statistical technique, the proposed models were used for risk analysis in the Bin-Chang Coal Chemical industry park. The results showed that high levels of Cd, Co, and Cr were found in the area with long time mining. The comprehensive single index and comprehensive risk index showed that the ecological risk of soil metals fell into the poor level, with probabilities of 53.2% and 55.6%, respectively. The health risk caused by hand to mouth ingestion was significantly greater than that by dermal exposure, and Cr was of prime concern for pollution control. Children were taking a major health risk. Their non-cancer risks were maintained at a high level, and 5.0-fold higher than adults under hand to mouth ingestion, and 8.2-fold higher than adults under dermal exposure. The cancer risk for children under these two exposure ways were both above the safety standard suggested by USEPA.

Key words: Monte Carlo analysis; ecological risk; health risk; multi-statistical; heavy metals

我国土壤重金属污染形势严峻,相关污染事件 频发^[1,2].土壤环境质量评价作为污染程度评估和 污染控制策略制定的重要参考而受到国内外学者的 广泛关注^[3~5].而土壤重金属评价系统是一个充满 不确定性的复杂系统,重金属含量大小、空间分布,评价模型选取及评价参数设定等因素均具有不确定性^[6,7].传统评价方法(单因子指数法、地积累指数 法、内美罗指数法、潜在生态危害指数法、富集因子指数法等)可对区域土壤重金属风险进行初步评估^[4,8~10],但难以充分反映区域土壤重金属污染风险状况^[7].从不确定性角度出发,应用 Monte Carlo 模拟对某一随机变量进行抽样,将其代入数据模型,确定函数值的模拟技术可有效降低风险评估系统中

的随机性和不确定性^[7,11]. 本研究以单因子指数^[8]、富集因子指数^[9]、健康风险模型^[12]为基础,将 Monte Carlo 模拟应用到土壤重金属生态风险和健康风险评价中,结合熵权和毒性系数^[10,13,14],构建了基于不确定性理论的生态风险和健康风险方法. 将所建模型应用到彬长煤化工业园区土壤重金属污染风险评价中,并结合多元统计方法对研究区土壤重金属富集特征、生态风险和健康风险水平进行综合分析,以期为当地土壤污染评价,主要污染物控制

收稿日期: 2015-05-23; 修订日期: 2015-06-29

基金项目: 国家自然科学基金项目(41173123); 中国科学院大学教育基金会调查项目(UCASEF10)

作者简介: 杨阳(1990~), 男,博士研究生,主要研究方向为生态风险评价, E-mail; yangyang_st@ rcees. ac. cn

* 通讯联系人, E-mail:wpchen@rcees.ac.cn

及居民健康防护提供科学依据,也可为其他区域环境风险评估提供借鉴.

1 材料与方法

1.1 研究区概况

彬长煤化工业园区地处黄土高原沟壑区,位于陕西省西北部彬县和长武县境内.该园区自 2002年开始建设,迄今已建成拥有大佛寺、亭南、胡家河,小庄和文家坡 5 处大型矿井,集煤、电、位、路一体化的大型煤化工业园区^[15].煤化产业是改善当地经济状况的重要一环,而过度的煤化作业也带来了巨大的环境负荷,目前该地区土壤重金属富集情况仍不明确,其生态风险和健康风险受到政府和民众的广泛关注^[15].根据当地土地利用格局,人口及煤化工厂分布,划定研究区范围(185.64 km²),于 2014年 5~8 月进行野外实地考察和采样,共布设70个采样点,用手持 GPS 精确定位(图1).

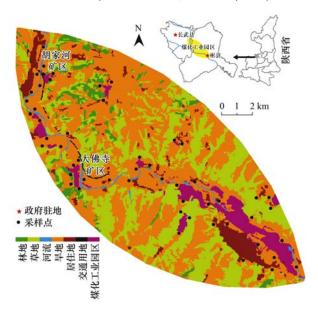


图 1 研究区概况及采样点分布示意

Fig. 1 Research area and distribution of sampling stations

1.2 实验分析

各样点采集混合土壤样品 1 份(5 点混合采样法,采样深度 0~10 cm). 样品经风干、研磨后,过 100 目尼龙筛,密封保存用于测定 pH、粒度、有机质等基本性质. 称取0. 250 0 g样品用四酸法进行消煮(10 mL HCL, 5 mL HNO₃, 5 mL HF 和 3 mL HClO₄) [16],定容后用 ICP-OES 测定 Cr、Mn、Ni、Fe、Zn 和 V 含量,用 ICP-MS 测定 Cd、Co、Cu 和 Pb 含量. 测定过程中采用国家标准物质 GSS-1 进行质量控制.

1.3 不确定模型构建

Monte Carlo 模拟方法通过大量随机抽样模拟产生满足一定概率分布形式的随机变量,用概率 P 处风险值(risk_p)的置信区间来表征风险评估系统中的不确定性^[6,17]. 其模拟步骤为^[11,17]:①确定评价模型中随机量,生成相应概率密度函数;②根据已知分布进行大量抽样生成相应随机数,代入模型计算风险值;③对结果进行统计分析,得到区域生态风险的概率分布及累积概率分布.

1.3.1 生态风险评价

权重设定对生态风险评价结果影响较大,传统评价方法对重金属富集特征的忽略易造成指标信息量缺失,同时评价过程中没有考虑一些生态毒性较高含量较低的重金属元素^[4].因此,本文提出一种新的赋权方法,将熵权和毒性系数引入到评价模型中^[10,13,14],计算公式如下:

$$f_{ij} = e_{ij} / \sum_{i=1}^{p} e_{ij} \tag{1}$$

$$H_i = -k \sum_{j=1}^{p} f_{ij} \ln f_{ij} (i = 1, 2, \dots, n)$$
 (2)

$$V_{i} = (1 - H_{i}) / (n - \sum_{i=1}^{n} H_{i})$$
 (3)

$$W_i = T_i V_i / \sum_{i=1}^n T_i V_i \tag{4}$$

式中, e_{ij} 表示第j个点位第i个评价因子的标准化值,k=1 ln p,p 为样点数目, W_i 为所求权重, T_i 为毒性系数^[10,13], V_i 为熵权^[14].

单因子指数法(P_i)以土壤背景值(S_i)为标准来评价重金属元素(C_i)的累积强度,是其他评价指数计算及土壤环境质量分级的基础^[4]. 富集因子(EF)通过参考元素(如 Fe)对评价因子(E)进行标准化,根据测定值(E_s , Fe $_s$)与背景值(E_b , Fe $_b$) ^[18]的比值变化可有效确定污染程度,并能达到源解析的目的^[9]. 这两种方法侧重单一因子富集水平,难以反映整体状况^[4]. 结合公式(1) ~ (4) 和 Monte Carlo 模拟构建随机综合单因子指数 \mathring{I}_P^m 和随机综合风险因子指数 \mathring{I}_{EE}^m ,计算公式如下:

$$\hat{I}_{P}^{m} = \sum W_{i}(\hat{C}_{i}^{m}/S_{i})$$
 (5)

$$\hat{I}_{\text{EF}}^{m} = \sum W_{i} \times \left[\left(\widetilde{E}_{s}^{m} / \widetilde{\text{Fe}}_{s}^{m} \right) - \left(E_{b} / \text{Fe}_{b} \right) \right] / \left(E_{b} / \text{Fe}_{b} \right)$$
(6)

式中,~表示随机数,m为随机模拟的实验次数.

1.3.2 健康风险评价

应用美国环境保护署(USEPA)提出的人体暴露风险评价模型对研究区土壤重金属污染进行健康风险评价^[12,19].根据世界卫生组织(WHO)和国际癌症研究机构(IARC)规定,将所研究的重金属元素按照其毒理学性质分为有阈(非致癌物,Cu、Mn、Pb、V和Zn)和无阈(致癌物,Cd、Co、Cr和Ni)两类^[20,21].根据土壤重金属迁移特征,确定其从环境介质进入人体的暴露途径主要为手-口摄入和皮肤接触两种^[21].经手-口摄入途径暴露剂量(ADD_{ing})、经皮肤接触日平均暴露量(ADD_{der})和致癌暴露量(LADD)计算方法参看文献[19,22,23].

暴露参数取值对健康风险评价结果影响较大^[12],参数实测能显著降低风险评价的不确定性^[23].本研究中全身暴露面积(SA)和体重(BW)两个主要参数通过对当地 448 名受试者(男性 303

人,女性 145 人,成人 320 人,儿童 128 人)进行实际测量获取,全身暴露面积(SA)通过对受试者体重(BW)和身高的测量值根据暴露面积估算公式^[24]得到. 摄入量(IR)、暴露频率(EF)、暴露年限(ED)、暴露时间(AT)、BW 和 SA 等主要参数取值参看表 1.

将 Monte Carlo 模拟引入到健康风险评价模型中, 计算公式如下,

$$\widehat{H}_{\rm I}^m = \sum \widehat{H}_{\rm Q}^m = \sum \widehat{\rm ADD}_i^m / {\rm RfD}_i^j \qquad (7)$$

$$\widetilde{R}_{T}^{m} = \sum_{i} \widetilde{R}^{m} = \sum_{i} \widetilde{L}ADD_{i}^{m}/SF_{i}$$
 (8)

式中, $H_{\rm I}$ 为非致癌风险指数, $H_{\rm Q}$ 为非致癌风险商, $R_{\rm T}$ 为致癌风险指数,R 为致癌风险商,R 为致癌风险商,R 为不同重金属在不同暴露途径下的参考剂量 $^{[19,23]}$, ${\rm SF}$ 为致癌因子, ${\rm RfD}$ 和 ${\rm SF}$ 取值参见文献[2,19,23],~表示随机数,m 为随机模拟的实验次数.

表 1 健康风险评价模型暴露参数取值1)

Table 1	Exposure	parameters	for	the	health	risk	assessment	models

		1 1		
参数	单位	Į.	文 值	文献
IR	mg∙d ⁻¹	20.0(儿童)	100(成人)	[22]
\mathbf{EF}	d•a ⁻¹	365	365	[22]
ED	a	6(儿童)	30(成人)	[22]
SA	m^2	0.75 ±0.15(儿童)	1.67 ±0.25(成人)	本研究
BW	$_{ m kg}$	25.41 ±6.50(儿童)	61.38 ± 11.7(成人)	本研究
AT	d	ED×365(非致癌)	72×365(致癌)	[22,26]

¹⁾ 儿童指0~6岁,成人指大于18岁

1.4 数据分析

土地利用数据采用 2014 年 TM 影像数据,利用 ENVI 4.8 和 ArcGIS 10.0 参照中国遥感解译分类标准^[25]进行影像解译,并通过实地调查进行验证(图1).应用 SPSS 17.0 对问卷记录及重金属含量数据进行统计与相关分析.应用 Matlab 7.0 进行聚类分析和权重计算, Monte Carlo 模拟采用 Crystal ball.

2 结果与讨论

2.1 土壤重金属污染特征

研究区土壤 pH 为 8. 38 ± 0. 30, 有机质含量为 1. 52% ± 0. 24%, 以粗粉沙(65. 07%)和细粉沙(28. 27%)为主,符合黄土高原沟壑区典型土壤的基本特征^[27].单因子指数评价结果显示(表 2),除 Zn 外, 其他元素含量均高于背景值^[18],以 Cd (1.96)、Co(1.89)和 Cr(1.51)最为显著.区域地球化学评价^[9]显示, Cd 和 Co 污染程度较高(EF > 1. 5)(表 2).空间分析显示(图 2),相对于其他区域,胡家河(HJH)和大佛寺(DFS)两个建矿时间较

长的园区 Cd、Co 和 Cr 富集现象比较明显. 相关分 析显示 Cd 与 $Cr(r = 0.438^*)$ 、 $Ni(r = 0.520^{**})$ 、 Pb($r = 0.642^{**}$), Co 与 Cr($r = 0.492^{*}$)、Ni(r =0.512**), Pb (r = 0.556**), Cr = 0.556** 0.567**)、Cu 与 Pb(r=0.499*)均有较强相关性. 聚类分析显示 Cd、Co、Cr、Cu、Ni、Pb 这 6 种重金 属关系相近(图3). Li 等[2] 指出矿业活动与 Cr、 Co、Cd、Pb 在土壤中的富集关系密切. 因此推断研 究区土壤中 Cd、Co、Cr、Cu、Ni 和 Pb 存在相似的 来源(煤化工业开发所致). Mn、V、Zn 这3种重金 属污染程度较小,聚类分析显示这3种元素可分为 一类(图3),相关分析显示土壤有机质与 Mn(r= 0.528**)、V(r=0.557**)相关性较强,与其他元 素相关性则较低. 一般来说,有机质含量大小与自 然母质有关,而 Mn 被用于测定人类活动对重金属 富集影响的参照元素^[28]. 因此推测 Mn、V 和 Zn 存 在一定的同源关系,且富集过程与自然风化有关.

2.2 生态风险不确定性评价

以Cd、Co、Cr、Cu、Ni、Pb这6种与矿区活动

表 2 彬长煤化工业园区土壤重金属污染水平

T-11. 2	D.11	1 1 4	1		: 1 . :	al	D: Cl	1	.1	industry park	
Table 2	Pollution	level of	neavv	metals in	son in	the	bin-Chang	coar	chemical	industry park	į.

				· · · · · · · · · · · · · · · · · · ·		0	7 1		
			重金属含量/mg	•kg ⁻¹		<u> </u>			_
重金属	最小值	最大值	算术均值 (标准差)	几何均值 (标准差)	背景值[18]	变异系数/%	单因子指数	富集因子	权重
Cd	0.04	0.49	0.20(0.10)	0.17(0.11)	0.1	50.29	1.96	1.67	0.566
Co	9.01	29.79	20.06(5.32)	19.32(5.84)	10.6	28.59	1.89	1.52	0.101
Cr	43.83	154.81	94.65(24.28)	91.52(24.11)	62.5	25.66	1.51	1.23	0.039
Cu	14.96	41.43	24.81(5.24)	24.29(5.20)	21.4	21.10	1.16	0.93	0.093
Mn	492.76	965.98	733.68(96.28)	727.44(96.48)	557	13.12	1.32	1.06	/
Ni	15.09	61.13	38.26(11.93)	36.24(12.10)	28.8	31.17	1.33	1.08	0.100
Pb	7.66	60.38	31.54(9.48)	30.02(9.60)	21.4	30.05	1.47	1.18	0.100
\mathbf{V}	60.71	92.43	78.18(6.45)	77.91(6.46)	66.9	8.25	1.17	0.93	/
Zn	27.93	55.85	42.52(6.24)	42.04(6.26)	69.4	14.68	0.61	0.49	/

重金属含量大小为标准化后数值

图 2 研究区土壤 Cd、Cr、Co 空间分布

Fig. 2 Spatial distribution of Cd, Cr, and Co in soils in the study area

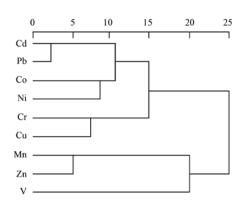


图 3 研究区土壤重金属聚类分析

Fig. 3 Cluster analysis for the soil heavy metals in the study area

相关的元素作为评价因子,应用所构建的不确定评价模型对研究区土壤重金属进行生态风险评价. 结果表明,研究区综合单因子指数(正态分布)主要(75%)集中在 $1.18\sim2.52$ 之间,平均水平为1.83,90.1%处于污染水平($I_P>1$),其中53.2%处于轻度污染($2>I_P>1$),33.2%处于中度污染($3>I_P>2$),3.7%处于重度污染($I_P>3$)(图4);综合风险因子指数(对数正态分布)主要(75%)集中在 $0.82\sim2.24$ 之间,平均水平为1.48,70.7%处于污染水

平,其中 55.6% 处于轻度污染($2 > I_{EF} > 1$),10.5% 处于中度污染($3 > I_{EF} > 2$),4.6% 处于重度污染($I_{EF} > 3$)(图 4). 当前研究区土壤重金属污染水平在可控范围内,但从风险分布形势来看大多数点位仍为轻度污染(图 4),并有向中度污染过渡趋势,应引起决策者足够重视.

2.3 土壤重金属人群暴露特征

健康风险评价结果(表3)显示手-口摄入是研究区土壤重金属暴露的主要途径,该途经下:不同重金属对当地民众造成的非致癌风险商和致癌风险商均较高;非致癌风险中,以 Mn、V 和 Pb 最为明显;致癌风险中,成人和儿童的致癌风险水平顺序大小一致,均为 Cr > Co > Cd > Ni,均低于 USEPA 推荐的最大可接受水平(10⁻⁴)^[22],但 Cr 和 Co 均高于USEPA 推荐的健康风险安全水平(10⁻⁶)^[21].皮肤暴露途径下,除 Cr 致癌风险高于健康风险安全水平(10⁻⁶)外,其他重金属非致癌风险和致癌风险均较低.可见 Cr 是研究区土壤重金属暴露的主要致癌因子,同时该地土壤 Cr 含量水平普遍较高(图2),而煤化作业过程中会释放大量的 Cr^[2],因此在污染防治时 Cr 应作为重点防范对象.

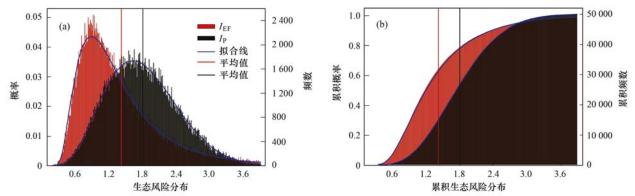


图 4 基于 Monte Carlo 模拟的土壤重金属生态风险

Fig. 4 Distribution of ecological risks of soil heavy metals based on Monte Carlo simulation

表 3 不同人群健康风险

Table 3 Health risks of people with different gender and ages

			Гable 3 Health 手-口i			nt gender and ag		 夫暴露	
项目	类别名称			双八 女		·			 女
火日	矢加石协	成人	 儿童	⁹ 成人	<u>.</u> 儿童	成人	 儿童	成人	<u>メ</u> 儿童
	Cu	9. 7E-04	5.0E-03	1.1E-03	5.4E-03	6.8E-06	7. 0E-05	7.0E-06	2.0E-05
	Mn	2.5E-02	1. 3E-01	2.8E-02	1.4E-01	2.9E-05	3.0E-04	3.0E-05	8. 7E-05
非致癌风险商		1.4E-02	7. 3E-02	1.6E-02	7.9E-02	6.6E-07	6.8E-06	6. 7E-07	2.0E-06
11 270 117 11 117	V	1.7E-02	9. 1E-02	1.9E-02	9.8E-02	4.1E-04	4. 2E-03	4. 2E-04	1. 2E-03
	Zn	2.2E-04	1.2E-03	2.5E-04	1.2E-03	1.6E-06	1.6E-05	1.6E-06	4.7E-06
	Cd	8.0E-07	8.3E-07	8.9E-07	9.0E-07	9.4E-09	1.9E-08	9.6E-09	5.6E-09
	Co	1.3E-06	1.4E-06	1.5E-06	1.5E-06	1.6E-07	3.2E-07	1.6E-07	9.2E-07
致癌风险商	Cr	2.6E-05	2.7E-05	2.8E-05	2.9E-05	6.2E-06	1.3E-05	6.3E-06	3.7E-05
	Ni	2.1E-07	2.2E-07	2.4E-07	2.4E-07	2.5E-08	5.2E-08	2.6E-08	1.5E-08
非致癌风		5.8E-02	3.0E-01	6.4E-02	3.2E-01	4.5E-04	4.6E-03	4.6E-04	1.3E-03
致癌风		2.8E-05	2.9E-05	3.1E-05	3.2E-05	6.4E-06	1.3E-05	6.5E-06	3.8E-05
0.08 - 0.06 - 2 0.04 - 0.02 -	0.2	0.3 自我 10 日本	ル童 成人 一 叔合线 — 平均値 — 平均値	- 4 000 - 3 000 - 2 000 豪 - 1 000	0.05 - 0.04 - 0.03 - 坐 0.02 - 0.01 -	(b) 1.8 2.4	3.0 3.6 效癌风险分布×10	4.2 4.8	- 2 250 - 1 800 - 1 350 - 900 - 450 0
1.0	(c)			- 50 000	1.0	(d)			50 000
0.8				- 40 000	0.8	(u)			- 40 000
→ 0.6 – → 単 → 0.4 –				- 30 000 繁	₩ 0.6 - ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩				- 30 000
₩ 0.4 -				- 20 000 瞬	※ 0.4 -				- 20 000 蘇
0.2				- 10 000	0.2				- 10 000
0	0.2	0.3	0.4	0	ο 🗀	1.8 2.4	3.0 3.6	4.2 4.8	0
		积非致癌风险分布					!致癌风险分布×		

为方便对比,成人非致癌风险指数扩大5倍

图 5 基于 Monte Carlo 模拟的手口摄入途径下成人和儿童的健康风险指数分布

Fig. 5 Distribution of health risk index in adults and children based on Monte Carlo simulation

两种暴露途径下儿童非致癌风险指数和致癌风险指数均较高(表3). 手-口摄入途径下,儿童非致癌风险指数达到成人的5.2倍(男性)和5.1倍(女性),致癌风险略高于成人;皮肤暴露途径下,儿童非致癌风险指数约为成人的10.3倍(男性)和2.1倍(女性),致癌风险指数约为成人的2.0倍(男性)和5.9倍(女性). 这可能与当地环境及儿童的生理特征和生活习惯有关,一方面研究区植被覆盖率低,黄土大面积裸露分布,而煤化工作业加剧了这一格局(图1);另一方面儿童体重较小,户外玩耍时间长,接触土壤机会较多,导致其健康风险高于成人.

2.4 健康风险不确定性评价

应用 Monte Carlo 模拟方法对手-口摄入重金属 暴露风险进行不确定性分析(图5). 结果表明,研 究区成人非致癌风险指数(正态分布)主要(75%) 集中在 $5.2 \times 10^{-2} \sim 6.6 \times 10^{-2}$ 之间, 平均水平为 6.0×10⁻²; 致癌风险指数(正态分布)主要集中在 2.3×10⁻⁵~3.5×10⁻⁵之间,平均水平为2.9×10⁻³ (图5); 儿童非致癌风险指数(对数正态分布)主要 (75%)集中在 $2.5 \times 10^{-1} \sim 3.7 \times 10^{-1}$ 之间,平均水 平为3.1×10⁻¹; 致癌风险指数(对数正态分布)主 要集中在 2.2×10⁻⁵~3.9×10⁻⁵之间,平均水平为 3.0×10^{-3} (图 5). 从健康风险分布形势来看,手-口 摄入途径下非致癌风险指数和致癌风险指数均在可 接受范围内 $(H_{\rm I} < 1, R_{\rm T} < 10^{-4})^{[22]}$,对成年人不会造 成太大伤害: 儿童承担的健康风险显著高于成人, 其非致癌风险为成人的5.0倍,非致癌风险指数大 于 0.25、0.35 和 0.5 的概率分别为 71.3%、25.9% 和 3.4%; 儿童承担的致癌风险均高于健康风险安 全水平(10-6)[21],其致癌风险指数大于0.25、0.35 和 0.5 的概率分别为 67.9%、23.0% 和 2.7%(图 5). 由于儿童抵抗力差,与土壤接触时间长,因此造 成的危害也较大,在风险管理时对儿童这一敏感受 体应给予更多关注.

3 结论

(1)应用 Monte Carlo 模拟,结合单因子指数、富集因子指数和健康风险评价方法构建了不确定风险评价模型,并进行实例研究,结合熵权和毒性系数进行土壤重金属生态风险评价,结合参数实测进行不同暴露途径下土壤重金属健康风险评价.结果表明所构建的模型可同步提供区域土壤重金属生态风险和健康风险的风险水平和其相应概率,有一定的实用性,同时该方法与多元分析的联合使用更有助

于风险决策的科学性和合理性.

(2)案例分析说明研究区 Cd、Co、Cr、Cu,Ni和Pb与矿业活动关系密切,大多数点位为轻度污染水平,有向中度污染过渡趋势; 手-口摄入途径下健康风险显著高于皮肤暴露途径下健康风险; 儿童承担的健康风险显著高于成人,在风险管理时应给予更多关注.

参考文献:

- [1] Zhao F J, Ma Y B, Zhu Y G, et al. Soil contamination in China; current status and mitigation strategies [J]. Environmental Science & Technology, 2014, 49(2): 750-759.
- [2] Li Z Y, Ma Z W, van der Kuijp T J, et al. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment [J]. Science of the Total Environment, 2014, 468-469: 843-853.
- [3] Luo X S, Yu S, Zhu Y G, et al. Trace metal contamination in urban soils of China [J]. Science of the Total Environment, 2012, 421-422: 17-30.
- [4] 范拴喜, 甘卓亭, 李美娟, 等. 土壤重金属污染评价方法进展[J]. 中国农学通报, 2010, **26**(17): 310-315.
- [5] Man Y B, Sun X L, Zhao Y G, et al. Health risk assessment of abandoned agricultural soils based on heavy metal contents in Hong Kong, the world's most populated city [J]. Environment International, 2010, 36(6): 570-576
- [6] 廖志恒, 孙家仁, 吴兑, 等. 基于不确定性分析的垃圾焚烧烟气中重金属的土壤沉积及生态风险评估[J]. 环境科学, 2014, 35(6): 2264-2271.
- [7] 李如忠,潘成荣,徐晶晶,等. 基于 Monte Carlo 模拟的潜在 生态危害指数模型及其应用[J]. 环境科学研究, 2012, **25** (12): 1336-1343.
- [8] Cheng J L, Shi Z, Zhu Y W. Assessment and mapping of environmental quality in agricultural soils of Zhejiang Province, China[J]. Journal of Environmental Sciences, 2007, 19(1): 50-54.
- [9] Reimann C, de Caritat P. Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry [J]. Environmental Science & Technology, 2000, 34(24): 5084-5091.
- [10] Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach [J]. Water Research, 1980, 14(8): 975-1001.
- [11] Chen W P, Chang A C, Wu L S. Assessing long-term environmental risks of trace elements in phosphate fertilizers[J]. Ecotoxicology and Environmental Safety, 2007, 67(1): 48-58.
- [12] Luo X S, Ding J, Xu B, et al. Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils [J]. Science of the Total Environment, 2012, 424: 88-96.
- [13] 徐争启,倪师军, 庹先国,等. 潜在生态危害指数法评价中 重金属毒性系数计算[J]. 环境科学与技术, 2008, **31**(2): 112-115.
- [14] Lu X W, Li L Y, Lei K, et al. Water quality assessment of Wei River, China using fuzzy synthetic evaluation [J]. Environmental

- Earth Sciences, 2010, 60(8): 1693-1699.
- [15] 史兴民, 刘春霞. 煤矿区居民对环境问题的感知——以陕西省彬长矿区为例[J]. 干旱区地理, 2012, **35**(4): 631-638.
- [16] Wang M E, Bai Y Y, Chen W P, et al. A GIS technology based potential eco-risk assessment of metals in urban soils in Beijing, China[J]. Environmental Pollution, 2012, 161: 235-242.
- [17] Atanassov E, Dimov I T. What Monte Carlo models can do and cannot do efficiently? [J]. Applied Mathematical Modelling, 2008, 32(8): 1477-1500.
- [18] 国家环境保护局. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. 87-98, 342-381.
- [19] US Environmental Protection Agency. EPA/600/R-09/052A. Exposure factors handbook [S]. Washington DC: USEPA, 2009.
- [20] International Agency for Research on Cancer (IARC),
 Monographs Programme on the Evaluation of Carcinogenic Risks
 to Humans [R]. Lyon, France, 2001.
- [21] 徐猛, 颜增光, 贺萌萌, 等. 不同国家基于健康风险的土壤 环境基准比较研究与启示[J]. 环境科学, 2013, 34(5):

- 1667-1678.
- [22] US Environmental Protection Agency. Risk assessment guidance for superfund volume I; human health evaluation manual (Part A) [R]. Washington; Office of Solid Waste and Emergency Response, 1989.
- [23] 段小丽, 王宗爽, 李琴, 等. 基于参数实测的水中重金属暴露的健康风险研究[J]. 环境科学, 2011, **32**(5): 1329-1339.
- [24] 环境保护部. 中国人群暴露参数手册(成人卷) [M]. 北京: 中国环境出版社, 2013. 262-263, 765.
- [25] GB/T 21010-2007, 土地利用现状分类[S].
- [26] WHO. World Health Report [M]. World Health Organization, 2006.
- [27] 庞奖励,张卫青,黄春长,等. 渭北高原土地利用变化对土壤剖面发育的影响——以洛川-长武塬区耕地转为苹果园为例[J]. 地理学报,2010,65(7);789-800.
- [28] Sutherland R A, Tolosa C A. Multi-element analysis of roaddeposited sediment in an urban drainage basin, Honolulu, Hawaii[J]. Environmental Pollution, 2000, 110(3): 483-495.

HUANJING KEXUE

Environmental Science (monthly)

Vol. 36 No. 11 Nov. 15, 2015

CONTENTS

Composition and Source Apportionments of Saccharides in Atmospheric Particulate Matter in Beijing		
Comparing Cell Toxicity of Schizosaccharomyces pombe Exposure to Airborne PM _{2.5} from Beijing and Inert Particle SiO ₂	LIU Meng-jiao, HUANG Yi, WEN Hang, et al. (3943)
Analysis on Regional Characteristics of Air Quality Index and Weather Situation in Beijing and Its Surrounding Cities During the	ne APEC ··· GAO Qing-xian, LIU Jun-rong, WANG Ning, et al. (2	3952)
$Analysis \ About \ Spatial \ and \ Temporal \ Distribution \ of \ SO_2 \ and \ An \ Ambient \ SO_2 \ Pollution \ Process \ in \ Beijing \ During \ 2000-2014$		3961)
Characteristics and Formation Mechanism of a Multi-Day Haze in the Winter of Shijiazhuang Using a Single Particle Aerosol Ma		
Modeling Study of A Typical Summer Ozone Pollution Event over Yangtze River Delta		
Distribution of Regional Pollution and the Characteristics of Vertical Wind Field in the Pearl River Delta		
Distribution Characteristics of Urea and Constitution of Dissolved Nitrogen in the Bohai Sea and the Huanghai Sea in Spring \cdot		
Relationship Between Agricultural Land and Water Quality of Inflow River in Erhai Lake Basin		
Input Characteristics and Pollution Assessment of Nutrients Pollution in the Primary Pollution Source of the Daliao River		4013)
Temporal and Spatial Distribution of Nutrients in Daning River Sediments and Their Correlations with Chlorophyll in the Three		
		4021)
Summer Greenhouse Gases Exchange Flux across Water-air Interface in Three Water Reservoirs Located in Different Geologic S		
Distribution of Redox Zone at Different Water Layers in the Presence of Periphyton and the Responsible Microorganisms		4043)
Distribution Characteristics and Source of Fluoride in Groundwater in Lower Plain Area of North China Plain; A Case Study in		
Distribution Characteristics of Fluoroquinolones Antibiotics in Surface Water and Groundwater from Typical Areas in A City		
Distribution of Aerobic Ammonia-Oxidizing Microorganisms in Sediments from Adjacent Waters of Rushan Bay		
Sources, Migration and Conversion of Dissolved Sterols in Qingmuguan Underground River		
Water-Sediment Partition of Polycyclic Aromatic Hydrocarbons in Karst Underground River		
Variation Characteristics and Sources of Polycyclic Aromatic Hydrocarbons in Karst Subterranean River During Rainfall Events		4088)
Distribution and Transportation Characteristics of Heavy Metals in Nanshan Laolongdong Subterranean River System and Its Cap	eacity of Self-Purification in Chongqing	
Distribution of Mercury in Plants at Water-Level-Fluctuating Zone in the Three Gorges Reservoir		
Development of Sediment Micro-Interface Under Physical and Chironomus plumosus Combination Disturbance		
Norfloxacin Solution Degradation Under Ultrasound, Potassium Persulfate Collaborative System		
Degradation of Acid Orange 7 with Persulfate Activated by Silver Loaded Granular Activated Carbon		
Kinetics and Reactive Species Analysis of Dimetridazole Degradation by TiO ₂ ·····		
Performance and Mechanism of Ferric Tannate in the Removal of Inorganic Nitrogen from Wastewater		
Performance of an Intermittent Aeration Membrane Bioreactor for Removal of Veterinary Antibiotics from Piggery Wastewater		
Advanced Treatment of Incineration Leachate with O ₃ -BAC and Double O ₃ -BAC		
Effects of Hydraulic Retention Time and Dissolved Oxygen on a CANON Reactor with Haydite as Carrier		
Inhibiting Form of Ammonium to AOB and Inhibiting Rule		
Nitrogen Removal Using ANAMMOX and Denitrification for Treatment of Municipal Sewage	• • • • • • • • • • • • • • • • • • • •	
Rapid Start-up of Simultaneous Nitrification and Denitrification Coupled Phosphorus Removal Process and Its Performing Characteristics of Coupled Phosphorus Removal Process and Its Performing Characteristics (Coupled Phosphorus Removal Process and Its Performing Characteristics).		
Effect of HCO ₃ ⁻ on Nitrogen Removal Efficiency in Partial Nitritation-ANAMMOX Process		
Research on Cultivation and Stability of Nitritation Granular Sludge in Integrated ABR-CSTR Reactor	WU Kai-cheng, WU Peng, SHEN Yao-liang, et al. (4195)
Influence of the Application of Activated Persulfate on Municipal Sludge Conditioning	, , , , ,	
Influence of Temperature on the Anaerobic Packed Bed Reactor Performance and Methanogenic Community		
Research on the Screening Method of Soil Remediation Technology at Contaminated Sites and Its Application		
Comprehensive Risk Assessment of Soil Heavy Metals Based on Monte Carlo Simulation and Case Study	YANG Yang, DAI Dan, CAI Yi-min, et al. (4225)
Heavy Metals Pollution in Topsoil from Dagang Industry Area and Its Ecological Risk Assessment	····· ZHANG Qian, CHEN Zong-juan, PENG Chang-sheng, et al. (4232)
Effects of Land Use Type on Soil Microbial Biomass Carbon and Nitrogen in Water-Stable Aggregates in Jinyun Mountain	0.000	
Influence of Different Straws Returning with Landfill on Soil Microbial Community Structure Under Dry and Water Farming	LAN Mu-ling, GAO Ming (4252)
Carbon Source Utilization Characteristics of Soil Microbial Community for Apple Orchard with Interplanting Herbage	DU Yi-fei, FANG Kai-kai, WANG Zhi-kang, et al. (4260)
Effects of Different Kinds of Organic Materials on Soil Heavy Metal Phytoremediation Efficiency by Sedum alfredii Hance		
In-situ Study on Effects of Combined Amendment on Translocation Control of Pb and Cd in Soil-Vegetable System		
Effects of Rice Cultivar and Typical Soil Improvement Measures on the Uptake of Cd in Rice Grains	WANG Mei-e, PENG Chi, CHEN Wei-ping (4283)
Pollution Characteristics and Ecological Risk Assessment of PAHs in Water and Fishes from Daqing Lakes	····· WANG Xiao-di, ZANG Shu-ying, ZHANG Yu-hong, et al. (4	4291)
Depth Profiles of Methane Oxidation Kinetics and the Related Methanotrophic Community in a Simulated Landfill Cover	XING Zhi-lin, ZHAO Tian-tao, GAO Yan-hui, et al. (4302)
Enhanced Performance of Rolled Membrane Electrode Assembly by Adding Cation Exchange Resin to Anode in Microbial Fuel	Cells MEI Zhuo, ZHANG Zhe, WANG Xin (4311)
Development of a Monoclonal Antibody-Based Sensor for Environmental Pyrene and Benzo(a) pyrene Detection	LI Xin, QIAO Yan, ZHONG Guo-zhen (4319)

《环境科学》第6届编辑委员会

主 编:欧阳自远

副主编: 赵景柱 郝吉明 田 刚

编 委: (按姓氏笔画排序)

万国江 王华聪 王凯军 王绪绪 田 刚 田 静 史培军

朱永官 刘志培 刘 毅 汤鸿霄 孟 伟 周宗灿 林金明

欧阳自远 赵景柱 姜 林 郝郑平 郝吉明 聂永丰 黄 霞

黄耀 鲍强潘纲潘涛魏复盛

环枪种草

(HUANJING KEXUE)

(月刊 1976年8月创刊) 2015年11月15日 第36卷 第11期

ENVIRONMENTAL SCIENCE

(Monthly Started in 1976)

Vol. 36 No. 11 Nov. 15, 2015

主	管	中国科学院	Superintended	by	Chinese Academy of Sciences
主	办	中国科学院生态环境研究中心	Sponsored	by	Research Center for Eco-Environmental Sciences, Chinese
协	办	(以参加先后为序)			Academy of Sciences
		北京市环境保护科学研究院	Co-Sponsored	by	Beijing Municipal Research Institute of Environmental
		清华大学环境学院			Protection
主	编	欧阳自远			School of Environment, Tsinghua University
编	辑	《环境科学》编辑委员会	Editor-in -Chief		OUYANG Zi-yuan
<i>⊅</i> 	14	北京市 2871 信箱(海淀区双清路	Edited	by	The Editorial Board of Environmental Science (HUANJING
		18 号,邮政编码:100085)			KEXUE)
		电话:010-62941102,010-62849343			P. O. Box 2871, Beijing 100085, China
		传真:010-62849343			Tel:010-62941102,010-62849343; Fax:010-62849343
		E-mail; hjkx@ rcees. ac. cn			E-mail; hjkx@ rcees. ac. cn
		http://www.hjkx.ac.cn			http://www.hjkx.ac.cn
出	版	4 学业版社	Published	by	Science Press
	///	北京东黄城根北街 16 号			16 Donghuangchenggen North Street,
		邮政编码:100717			Beijing 100717, China
印刷装	订	北京北林印刷厂	Printed	by	Beijing Bei Lin Printing House
发	行	辞华出版 社	Distributed	by	Science Press
		电话:010-64017032			Tel:010-64017032
		E-mail:journal@mail.sciencep.com			E-mail:journal@mail.sciencep.com
订 购	处	全国各地邮电局	Domestic		All Local Post Offices in China
国外总统	发行	中国国际图书贸易总公司	Foreign		China International Book Trading Corporation (Guoji
		(北京 399 信箱)			Shudian), P. O. Box 399, Beijing 100044, China

中国标准刊号: ISSN 0250-3301 CN 11-1895/X

国内邮发代号: 2-821

国内定价:120.00元

国外发行代号: M 205

国内外公开发行