

(HUANJING KEXUE)

ENVIRONMENTAL SCIENCE

第33卷 第7期

Vol.33 No.7

2012

中国科学院生态环境研究中心 主办

採货券及 (HUANJING KEXUE)

ENVIRONMENTAL SCIENCE

第33卷 第7期 2012年7月15日

目 次

三峡库首秭归地区大气降水硫同位素组成及示踪研究 吴起鑫 韩贵琳(2145)
三峡库首秭归地区大气降水硫同位素组成及示踪研究 — 吴起鑫,韩贵琳(2145)成都春季生物质燃烧和沙尘期间气溶胶散射特征及其重建 — 岳建华,陶俊,林泽健,朱李华,曹军骥,罗磊(2151)太湖上空大气气溶胶光学厚度及其特征分析 — 饶加旺,马荣华,段洪涛,姜广甲,尚琳琳,周琳(2158)环上海地区干霾气溶胶垂直分布的季节变化特征 — 徐婷婷,秦艳,耿福海,陈勇航,张华,刘琼,马骁骏(2165)南京冬季市区和郊区气溶胶中 PAHs 浓度的昼夜特征及粒径分布 — 张红亮,樊曙先,顾凯华,朱彬,范洋,祖繁,李红双,孟庆紫,何佳宝(2172)青岛大气气溶胶水溶性无机离子研究,季节分布特征 — 刘臻 祁建华 王琳 陈晓静 五全辉 高全旺(2180)
大湖上空大气气滚胶光学厚厚及甘特征分析
不上海帕又干霜与淡胶垂直入在的季节亦化特征
$\frac{1}{2}$ 本面区 $\frac{1}{2}$ 使用从至且从中间分子 $\frac{1}{2}$ 是记的证本方文 $\frac{1}{2}$ 表面区 $\frac{1}{2}$ 表面区 $\frac{1}{2}$ 表面区 $\frac{1}{2}$ 数据 $\frac{1}{2}$
用环ぐ子中区神界区、(役队下 FAIIS 你反的复数行政人位任力中。""此次主 整理集 原则化 来从 艾泽 坦敏 未处如 老庄此 每件点(2172)
来自上层层波脉 Lick U.T. H. 或了TTC。 手中八大射灯
育岛人气气浴胶水浴性无机离于研究:
城市污水处理广生成的微生物气浴胶的污染特性 邱雄辉,李彦鹏,千铁军,李美玲,与智慧,苗宝,王湘君(2191)
基十 WEPS 模型的大津郊区土壤风蚀起尘及对中心城区迁移量估算 陈刹,韩婷婷,李涛,她业齐,自志鹏,土斌(2197)
浒苔绿潮与苏北近岸海域营养盐浓度的关系研究 高嵩, 石晓勇, 王婷(2204)
福建沿海近 10 a 赤潮基本特征分析 ······ 李雪丁(2210)
HSPF 水文水质模型应用研究综述 ······ 李兆富,刘红玉,李燕(2217)
城市降雨径流模拟的参数不确定性分析 黄金良,林杰,杜鹏飞(2224)
利用 CDOM 吸收系数估算太湖水体表层 DOC 浓度
嘉善地区水环境敏感占水质影响权重分析及风险等级判定
重庆市盘溪河水质不同季节日变化规律及水质评价 张千千 王效科 超丽岭 景非 欧阳太云 侯培强 张烨(2251)
南京市温州水质对城市化影响强度的响应研究
中国外别河流技术上,在海中国文学专的研究
」及伊彻住所租份司小小师风口了大示时明九 B·帕十乙河运站台来会问公本的不同日府环接田乙公坛。
影响太丁州流域世关至间汀中的小闸尺及小境凶丁汀州 ····································
大型底栖动物生物评价指数比较与应用
青藏局原纳木错流域水体总汞的时空分布特征 土康,康世昌,郭军明,张强与,黄杰,郑伟(2288)
青藏高原纳木错湖水主要化学离子的时空变化特征 郭军明,康世昌,张强号,黄杰,王康(2295)
用物理-生态集成技术局部控制富营养化 李秋华,夏品华,吴红,林陶,张友春,李存雄,陈丽丽,杨帆(2303)
太湖氮素出入湖通量与自净能力研究 陈小锋, 揣小明, 曾巾, 刘涛, 杨柳燕(2309)
富营养湖泊沉积物中磷组分对硫酸盐的响应 袁探,华玉妹,朱端卫,赵建伟,蔡建波(2315)
巢湖表层沉积物磷的空间分布差异性研究
南京地区典型有机污染物长距离输送潜力研究 方利汀 星有方 丁中原 马子龙 柳敏 高宏(2330)
在海内陆型河和物山型码分布及其与挂久性有机污染物的相关性研究 ····· 林田 方引 陈颖军 胡利昆 郭宝刚 张千(2335)
京陈江香庄晚丰巨水体名环类区的运洗柱在
而仅在里风权农居小平夕平月在时行不行正。
电丁及初外胜区刊流几偿初中多录联本的行案小十、77年及木源
生工模形基础聚焦及和概率。
基于梯形模糊数的讥帜物里金属污染风险评价模型与头例研究
李 《, 黄 瑾 辉, 冒 光 明, 唐 晓 娇, 曰 兵, 祭 青, 犹 意 娜, 梁 建 (2352)
初海湾海岸带升发对近岸沉积物重金属的影响··················秦延文,郑丙辉,李小宝,张雷,时瑶,曹伟(2359)
崇明东滩表层沉积物重金属空间分布特征及其污染评价 李雅娟,杨世伦,侯立军,周菊珍,刘英文(2368)
白洋淀底泥重金属形态及竖向分布 李必才,何连生,杨敏,孟睿,袁冬海,席北斗,舒俭民(2376)
西南涌酸挥发硫化物浓度水平及影响因素研究 刘晓冰,温琰茂,利锋,吴昌华,段志鹏(2384)
氨氮在饮用水牛物滤池内的去除机制 刘冰、苏辉、余国忠、于鑫、赵承美、李清飞、张舒婷、魏博(2394)
氨氮在饮用水生物滤池内的去除机制 ····································
氨氮在饮用水生物滤池内的去除机制 ····································
氨氮在饮用水生物滤池内的去除机制 ····································
氨氮在饮用水生物滤池内的去除机制 ····································
氨氮在饮用水生物滤池内的去除机制
氨氮在饮用水生物滤池内的去除机制
氨氮在饮用水生物滤池内的去除机制
南京冬季市区和郊区气溶胶中 PAHs 浓度的昼夜特征及粒径分布
氨氮在饮用水生物滤池内的去除机制
A+OSA 污泥減量上之碳兀紊平衡与减量机制研究 ··································· 翟小敏, 局旭, 张 曼 更, 贾 丽, 郭 幼松(2444) 系列混合碳源在 EBPR 系统颗粒化进程中的影响研究 ····································
A+OSA 污泥減量上之碳兀紊平衡与减量机制研究 ··································· 翟小敏, 局旭, 张 曼 更, 贾 丽, 郭 幼松(2444) 系列混合碳源在 EBPR 系统颗粒化进程中的影响研究 ····································
A+OSA 污泥減量上之碳兀紊平衡与减量机制研究 ··································· 翟小敏, 局旭, 张 曼 更, 贾 丽, 郭 幼松(2444) 系列混合碳源在 EBPR 系统颗粒化进程中的影响研究 ····································
A+OSA 污泥減量上之碳兀紊平衡与减量机制研究 ··································· 翟小敏, 局旭, 张 曼 更, 贾 丽, 郭 幼松(2444) 系列混合碳源在 EBPR 系统颗粒化进程中的影响研究 ····································
A+OSA 污泥減量上之碳兀紊平衡与减量机制研究 ··································· 翟小敏, 局旭, 张 曼 更, 贾 丽, 郭 幼松(2444) 系列混合碳源在 EBPR 系统颗粒化进程中的影响研究 ····································
A+OSA 污泥減量上之碳兀紊平衡与减量机制研究 ··································· 翟小敏, 局旭, 张 曼 更, 贾 丽, 郭 幼松(2444) 系列混合碳源在 EBPR 系统颗粒化进程中的影响研究 ····································
A + OSA 污泥減量上之碳元素平衡与減量机制研究 霍小敏, 高旭, 张曼曼, 買丽, 郭幼松(2444) 系列混合碳源在 EBPR 系统颗粒化进程中的影响研究 蒋涛, 孙培德, 徐少娟(2451) 氧化还原介体催化强化 Paracoccus versutus 菌株 GW1 反硝化特性研究 李海波, 廉静, 郭延凯, 赵丽君, 杜海峰, 杨景亮, 郭建博(2458) 1 株转座子插入突变菌株 TB34 的筛选及产氢分析 刘洪艳, 王广策, 侍刘洋, 朱大玲(2464) 蜜环菌漆酶对氯酚类污染物催化降解条件优化 秦仁炳, 朱显峰, 吴珂, 张晶晶, 赵海康(2470) 双季稻田 CH4 和 N2O 排放特征及品种筛选研究 傅志强, 朱华武, 陈灿, 黄璜(2475) 闽江河口短叶茳芏湿地 CH4, 和 N2O 排放对氮十分。 华晓杰, 刘兴土, 仝川, 孙志高(2482)
A + OSA 污泥減量上之碳元素平衡与減量机制研究 霍小敏, 高旭, 张曼曼, 買丽, 郭幼松(2444) 系列混合碳源在 EBPR 系统颗粒化进程中的影响研究 蒋涛, 孙培德, 徐少娟(2451) 氧化还原介体催化强化 Paracoccus versutus 菌株 GW1 反硝化特性研究 李海波, 廉静, 郭延凯, 赵丽君, 杜海峰, 杨景亮, 郭建博(2458) 1 株转座子插入突变菌株 TB34 的筛选及产氢分析 刘洪艳, 王广策, 侍刘洋, 朱大玲(2464) 蜜环菌漆酶对氯酚类污染物催化降解条件优化 秦仁炳, 朱显峰, 吴珂, 张晶晶, 赵海康(2470) 双季稻田 CH4 和 N2O 排放特征及品种筛选研究 傅志强, 朱华武, 陈灿, 黄璜(2475) 闽江河口短叶茳芏湿地 CH4, 和 N2O 排放对氮十分。 华晓杰, 刘兴土, 仝川, 孙志高(2482)
A + OSA 污泥減量上之碳元素平衡与減量机制研究 霍小敏, 高旭, 张曼曼, 買丽, 郭幼松(2444) 系列混合碳源在 EBPR 系统颗粒化进程中的影响研究 蒋涛, 孙培德, 徐少娟(2451) 氧化还原介体催化强化 Paracoccus versutus 菌株 GW1 反硝化特性研究 李海波, 廉静, 郭延凯, 赵丽君, 杜海峰, 杨景亮, 郭建博(2458) 1 株转座子插入突变菌株 TB34 的筛选及产氢分析 刘洪艳, 王广策, 侍刘洋, 朱大玲(2464) 蜜环菌漆酶对氯酚类污染物催化降解条件优化 秦仁炳, 朱显峰, 吴珂, 张晶晶, 赵海康(2470) 双季稻田 CH4 和 N2O 排放特征及品种筛选研究 傅志强, 朱华武, 陈灿, 黄璜(2475) 闽江河口短叶茳芏湿地 CH4, 和 N2O 排放对氮十分。 华晓杰, 刘兴土, 仝川, 孙志高(2482)
A + OSA 污泥減量上之碳元素平衡与減量机制研究 霍小敏, 高旭, 张曼曼, 買丽, 郭幼松(2444) 系列混合碳源在 EBPR 系统颗粒化进程中的影响研究 蒋涛, 孙培德, 徐少娟(2451) 氧化还原介体催化强化 Paracoccus versutus 菌株 GW1 反硝化特性研究 李海波, 廉静, 郭延凯, 赵丽君, 杜海峰, 杨景亮, 郭建博(2458) 1 株转座子插入突变菌株 TB34 的筛选及产氢分析 刘洪艳, 王广策, 侍刘洋, 朱大玲(2464) 蜜环菌漆酶对氯酚类污染物催化降解条件优化 秦仁炳, 朱显峰, 吴珂, 张晶晶, 赵海康(2470) 双季稻田 CH4 和 N2O 排放特征及品种筛选研究 傅志强, 朱华武, 陈灿, 黄璜(2475) 闽江河口短叶茳芏湿地 CH4, 和 N2O 排放对氮十分。 华晓杰, 刘兴土, 仝川, 孙志高(2482)
A + OSA 污泥減量上之碳元素平衡与減量机制研究
A + OSA 污泥碱量 L Z 碳元素平衡与减量机制研究
A + OSA 污泥減量上之碳元素平衡与減量机制研究 霍小敏, 高旭, 张曼曼, 買丽, 郭幼松(2444) 系列混合碳源在 EBPR 系统颗粒化进程中的影响研究 蒋涛, 孙培德, 徐少娟(2451) 氧化还原介体催化强化 Paracoccus versutus 菌株 GW1 反硝化特性研究 李海波, 廉静, 郭延凯, 赵丽君, 杜海峰, 杨景亮, 郭建博(2458) 1 株转座子插入突变菌株 TB34 的筛选及产氢分析 刘洪艳, 王广策, 侍刘洋, 朱大玲(2464) 蜜环菌漆酶对氯酚类污染物催化降解条件优化 秦仁炳, 朱显峰, 吴珂, 张晶晶, 赵海康(2470) 双季稻田 CH4 和 N2O 排放特征及品种筛选研究 傅志强, 朱华武, 陈灿, 黄璜(2475) 闽江河口短叶茳芏湿地 CH4, 和 N2O 排放对氮十分。 华晓杰, 刘兴土, 仝川, 孙志高(2482)

粉煤灰吸附-Fenton 及热再生处理亚甲基蓝废水的特性研究

白玉洁,张爱丽*,周集体

(大连理工大学环境学院,工业生态与环境工程教育部重点实验室,大连 116024)

摘要: 首先表征了水洗粉煤灰(FA)及酸改性粉煤灰(M-FA)的物理化学特性,采用序批实验研究了 FA 及 M-FA 对亚甲基蓝 (methylene blue, MB) 废水的吸附特性,并对吸附平衡的粉煤灰进行了 Fenton 氧化再生和热再生性能研究. 结果表明, FA 和 M-FA 吸附速率方程符合二级吸附速率模型,吸附等温方程符合 Langmuir 等温模型,吸附平衡时间为 30 min, FA 和 M-FA 的平衡吸附量分别为 4. 22 mg·g $^{-1}$ 和 5. 98 mg·g $^{-1}$, M-FA 吸附能力优于 FA. 在 pH 2 $^{-1}$ 2 的范围内随着 pH 的提高, M-FA 吸附量增大, FA 吸附量缓慢减小至 pH 8 为最低点后明显增大, 静电吸附对吸附量的增减起主要作用. 当 $^{-1}$ 2 投加量为 78. 4 mmol·L $^{-1}$ 1、Fe $^{-1}$ 4 投加量为 0. 72 mmol·L $^{-1}$ 1时, FA 和 M-FA 的 Fenton 氧化法再生率分别为 61% 和 55%. 当热再生条件为 400 $^{-1}$ 2 h 时, 连续 3 次的热再生, FA 再生率增加, 分别为 102%、104% 和 107%, M-FA 再生率减小, 分别为 82%、75% 和 74%. FA 再生率优于 M-FA, 热再生优于 Fenton 氧化再生.

关键词:粉煤灰;吸附; Fenton; 热再生; 亚甲基蓝

中图分类号: X703.1 文献标识码: A 文章编号: 0250-3301(2012)07-2419-08

Study on Treatment of Methylene Blue Wastewater by Fly Ash Adsorption-Fenton and Thermal Regeneration

BAI Yu-jie, ZHANG Ai-li, ZHOU Ji-ti

(Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China)

Abstract: The physicochemical properties of water-washed fly ash (FA) and acid modified fly ash (M-FA) were investigated. The adsorption of methylene blue by FA and M-FA were studied by batch experiments. Two methods, Fenton-drive oxidation regeneration and thermal regeneration, were used for regeneration of the used FA and M-FA. The result showed that the rate of adsorption process followed the second order kinetics and the adsorption followed Langmuir isotherms. The adsorption equilibrium time was 30 min, and the equilibrium adsorption capacity of FA and M-FA were 4. 22 mg·g⁻¹ and 5. 98 mg·g⁻¹ respectively. The adsorption capability of M-FA was higher than that of FA. In the range of pH 2-12, the adsorption capacity of M-FA increased with the increase of pH, whereas the adsorption capacity of FA decreased slowly until the pH 8 and then increased. Electrostatic adsorption was the major factor on the adsorption capacity. Around 61% and 55% percentage regeneration (PR) were obtained for FA and M-FA respectively when 78. 4 mmol·L⁻¹ H₂O₂ and 0.72 mmol·L⁻¹ Fe²⁺ were used. When the condition of thermal regeneration was 400°C and 2 h, a positive correlation can be found between the PRs of FA and regeneration times, the PRs were 102%, 104% and 107% in three cycles of adsorption-thermal regeneration process. However a negative correlation can be found between the PRs of M-FA and regeneration times, the PRs were 82%, 75% and 74% in three cycles of adsorption-thermal regeneration process. The PR of FA was higher than that of M-FA, and thermal regeneration was superior to Fenton-drive regeneration.

Key words: fly ash; adsorption; Fenton; thermal regeneration; methylene blue

粉煤灰是燃煤电厂排放的工业固体废弃物,据报道我国粉煤灰年产量逐年稳步增加,虽然利用率也逐年增加,但每年仍然有大量粉煤灰被抛弃,加之历年堆存量,已造成占用土地和环境污染,给环境造成了很大的压力[1].因此,粉煤灰作为潜在资源的利用,特别是高附加值产品的开发利用已经成为研究者关注的热点.研究表明,粉煤灰中含有一些活性基团和多孔性质,使其具有一定的吸附性能[2].因此,近年来粉煤灰已经被用作低成本吸附剂,处理有机废水和废气.有报道表明,粉煤灰经酸改性可以提

高其吸附量^[3]. Wang 等^[4]研究分别在室温和 100℃下利用 HCl 改性粉煤灰,使比表面积从原粉煤灰的 15.6 $\text{m}^2 \cdot \text{g}^{-1}$ 分别提高到 28.3 $\text{m}^2 \cdot \text{g}^{-1}$ 和 30.1 $\text{m}^2 \cdot \text{g}^{-1}$. 有学者^[5]研究表明,以碱性染料亚甲基蓝为典型污染物,粉煤灰吸附量由硝酸改性前的 1.4 × 10^{-5} mol·g⁻¹ 提高到改性后的 2.4 ×

收稿日期: 2011-09-29; 修订日期: 2012-01-11

基金项目: 国家自然科学基金项目(21077021,50978040)

作者简介: 白玉洁(1986~),女,硕士,主要研究方向为水污染控制工程,E-mail:bai-yu-jie@163.com

^{*} 通讯联系人, E-mail: zal58@ 163. com

10⁻⁵ mol·g⁻¹,使吸附量提高了71%.

吸附法是废水处理中常用的高效脱除有机污染 物的方法,但吸附剂吸附了有害物质后,其自身成为 一种有毒有害的废物,需要正确的处理和处置[6], 以避免二次污染问题. 此外,频繁更换新吸附剂也会 带来较大的经济成本等问题. 因此,吸附剂再生的研 究一直受到研究者的关注. 常用的再生方法有[7~9]: 热再生法、化学氧化再生法、生物再生法、溶剂再生 法、超临界流体再生法和微波辐照再生法. 热再生法 虽然需要较高的热量和费用,并且吸附剂会有损失, 但它是目前唯一在工业上应用的方法[10]. Rivera 等[11]利用热再生法对吸附邻氯酚饱和的活性炭进 行再生,3种活性炭平均的再生率为第1次104%, 第2次103%,第3次97%. Wang等[12]对吸附亚甲 基蓝的天然沸石和人工沸石进行了热再生研究,再 生率为天然沸石 60%,人工沸石 100%. Fenton 高级 氧化再生属于化学氧化再生法,由于 H,O, 在 Fe²⁺ 的催化下生成具有强氧化性的羟基自由基(·OH), 其氧化电位为 2.80 V,仅次于氟的氧化电位 2.87 V,对各种有机物特别是难降解有机物有较好的氧 化作用[13]. 目前有研究表明, Fenton 高级氧化再生 活性炭有较好的效果. Huling 等[14,15] 研究利用 Fenton 试剂再生吸附了甲基叔丁基醚(MTBE)饱和 的活性炭,吸附/再生循环2次,再生率均可以达到 91%. Toledo^[16]等研究用 Fenton 试剂对有机氯化合 物吸附饱和的活性炭进行再生,可以达到高效的再 生效果,并且连续5次再生后吸附容量仍没有损失.

将吸附法和 Fenton 法相结合深度处理有机污水,吸附过程可以使有机物被浓缩后进行 Fenton 氧化,可以解决吸附法和 Fenton 法单独处理存在的一些问题^[17]:①原位再生,破坏吸附的有机物,省去了吸附剂的积累及运输费用;②再生液无需再进行处理,因为吸附质已经矿化为无机物;③吸附过程可以使有机物被氧化之前被浓缩,使 Fenton 反应中的羟基自由基(·OH)有更高的利用率,阻止其用于氧化碳酸盐离子和重碳酸盐离子;④省去了吸附饱和的吸附剂额外处置的费用.目前,关于粉煤灰作为吸附剂的报道很多,但对粉煤灰再生的报道较少,特别是酸改性粉煤灰的再生研究还鲜见报道.

本研究选取了一个电厂煤粉炉产生的经静电除 尘器收集的粉煤灰,并对该粉煤灰进行了酸改性.测 定了粉煤灰的表观形貌、化学组成、氮吸附性能,表 征了改性前后粉煤灰的物理化学特性.以亚甲基蓝 (MB)作为典型难降解有机污染物,通过粉煤灰对 水溶液中 MB 的吸附实验,比较了原粉煤灰和酸改性粉煤灰的吸附性能:测定了吸附速率方程参数,得出了改性前后粉煤灰的理论平衡吸附量和吸附速率常数;测定了吸附等温线方程参数,得出了改性前后粉煤灰的饱和吸附量;还考察了影响吸附量的主要因素 pH. 比较了吸附后的原粉煤灰和酸改性粉煤灰一定条件下的 Fenton 高级氧化再生及热再生性能.为难降解有机废水的处理以及粉煤灰的高附加值利用提供一种新方法,并为新方法的应用提供一定的理论依据和应用参考.

1 材料与方法

1.1 材料

本实验所用水样是实验室配制的质量浓度为 $100 \text{ mg} \cdot \text{L}^{-1}$ 的亚甲基蓝(MB)水溶液.

粉煤灰取自某电厂煤粉炉产生的经静电除尘的灰.实验前对粉煤灰进行水洗预处理,以除去一些细微颗粒和纤维等杂质.预处理方法:自来水清洗3遍,将上清撇去,再用去离子水清洗3遍,放置于105℃烘箱中烘至恒重,记作灰 FA,置于干燥器内备用.

酸改性粉煤灰:在 0.5 mol·L^{-1} 硫酸、灰酸比为 1:5、反应温度 30 \mathbb{C} 和搅拌速度为 150 r·min^{-1} 的条件下,反应 1 h 后用去离子水洗到中性,放置于 105 \mathbb{C} 烘箱中烘至恒重,得到酸改性粉煤灰,记作灰 M-FA,置于干燥器内备用.

实验药品:亚甲基蓝($C_{16}H_{18}CIN_3S\cdot 3H_2O$)、过氧化氢、氢氧化钠、硫酸,七水硫酸亚铁,以上均为分析纯.

实验仪器: 恒温培养振荡器(智城 ZHWY-200B)、pH 计(EL20)、离心机(Bec kman)、马弗炉.

1.2 实验方法

1.2.1 吸附实验

- (1)一次吸附 取 1 g 粉煤灰于 250 mL 锥形瓶中,加入 100 mL 100 mg·L⁻¹的 MB 溶液,在恒温振荡器中反应 30 min (已达到吸附平衡,见 2.2.1节),反应条件:温度为 30%,150 r·min⁻¹,反应后,进行离心,12 000 r·min⁻¹,10 min,取上清液测定 MB 残余浓度,计算 MB 去除率和粉煤灰吸附容量.
- (2)二次吸附 粉煤灰再生后,进行二次吸附, 其浓度、体积、灰水比等条件保持与一次吸附的一致, 反应后测定上清液测定 MB 残余浓度,计算再生率.
- (3)吸附动力学实验 不同振荡时间:1、3、5、10、20、30、60 min 时分别取样 1 mL,离心分离,其

他操作同一次吸附,给出拟合的动力学速率曲线.

(4)吸附等温线 取若干份初始 MB 为 100 $mg \cdot L^{-1}$ 的水样 100 mL,依次分别加入 0.1、0.2、0.4、0.6、0.8、1、1.2 和 1.4 g 的 FA 和 M-FA,其他操作同一次吸附,给出拟合的等温线.

1.2.2 再生实验

Fenton 氧化再生:取上述一次吸附平衡后的粉煤灰于250 mL 锥形瓶中,加入一定浓度的 FeSO₄ 溶液,用硫酸调节 pH = 3,并迅速加入过氧化氢,在恒温振荡器中反应 1 h,反应条件:温度为 30° C,150 r·min⁻¹,反应结束后离心分离,对再生后的灰进行二次吸附.

热再生:取上述一次吸附平衡后的粉煤灰在105℃烘干至恒重后,再置于坩埚中,在马弗炉中经过一定温度的焙烧后,取出进行二次吸附实验.固定焙烧时间为2h考察焙烧温度因素的影响,固定焙烧温度为400℃考察焙烧时间因素的影响.

1.2.3 分析方法及参数计算

使用电子扫描电镜 Quanta 450 观察粉煤灰的表观形貌;使用 X 射线荧光光谱仪 SRF3400 测定粉煤灰的化学组成;使用 Quadrasorb S14 测定粉煤灰的比表面积.

采用紫外-分光光度法(JASCO V-560)测定 MB 浓度,在665 nm 下测定吸光度,根据标准曲线计算 MB 浓度.

吸附量: $q_e = (c_0 - c_e)V/m$ (1) 式中, c_0 :溶液初始浓度, $mg \cdot L^{-1}$; c_e :时间 t 时溶液浓度, $mg \cdot L^{-1}$; V:溶液的体积,L; m:吸附剂的质量,g.

再生率^[18]: PR =
$$\frac{q_{e2}}{q_{e1}} \times 100\%$$
 (2)

式中, q_{e2} :吸附剂再生后的吸附容量; q_{e1} :将再生吸附时的平衡浓度,代入新粉煤灰的 Langmuir 等温式中计算得到的新粉煤灰在相同平衡浓度下的平衡吸附量, $mg \cdot g^{-1}$.

2 结果与讨论

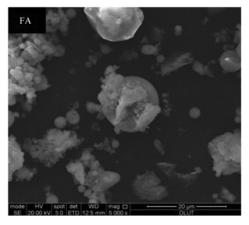
2.1 FA 和 M-FA 的物理化学性能表征

2.1.1 FA 和 M-FA 化学组成对比

FA 和 M-FA 化学组成对比见表 1. 从表 1 中可以看出,粉煤灰经过硫酸改性后化学组成发生了变化. M-FA 中的总碱性成分(K_2O_x CaO 和 MgO)含量少于 FA,活性基团成分(SiO_2_x Al $_2O_3$ 和 Fe $_2O_3$)总含量高于 FA,微量组成总含量小于 FA.

表 1 FA 和 M-FA 的化学组成(质量分数)对比/%

Table 1 Comparison of the components of FA and M-FA/%


灰种类	主要化学组成						- 烧失量 ¹⁾ -	微量化学组成				
	SiO ₂	Al_2O_3	$\mathrm{Fe_2O_3}$	K ₂ O	CaO	MgO	院大里"	SO_3	P_2O_5	MnO	ZnO	Cl
FA	52. 8	28	7. 8	3. 84	3. 16	1. 29	8. 15	0.38	0.34	0.067	0. 035	0.070
M-FA	54. 6	27.6	8.41	3. 93	1.5	0.94	5.47	0.38	0. 13	0.058	0.029	0.106

1) 烧失量:在800℃下灼烧24 h

2.1.2 FA 和 M-FA 的表观形貌对比

图 1 为 FA 和 M-FA 的扫描电镜图. 可以看出 FA 多数为不规则球形颗粒聚集体,聚集体颗粒比较大,

且附着一些较小颗粒,表面凹凸不平,有部分小突起, 颗粒上无明显孔道结构. M-FA 多数为球形颗粒,无明显颗粒聚集体,颗粒粒度较小,这是由于酸改性过程

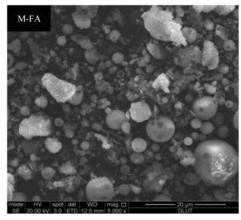


图1 FA和M-FA扫描电镜图

Fig. 1 Scanning electron micrographs of FA and M-FA

减小了碱性成分(见 2.1.1 节),降低了黏结作用,使聚集体颗粒散开.此外,M-FA中的球形颗粒表面有明显孔道,这是由于粉煤灰中的颗粒表面的金属氧化物(Al₂O₃和 Fe₂O₃)与酸反应溶解造成的.

2.1.3 FA 和 M-FA 氮吸附特性

表 2 是 2 种粉煤灰 FA 和 M-FA 的氦吸附特性对比. M-FA 的比表面积是 FA 的约 1.4 倍,这是主要是由于酸改性过程使 FA 的聚集体分散开,大颗粒变成若干小颗粒. M-FA 孔体积变大,平均孔径变小,这是由于改性过程中,硫酸与 FA 表面的 SiO₂ 和 Al_2O_3 、 Fe_2O_3 成分反应,破坏了 FA 表面结构,形成孔道结构的结果. 这种作用同时也增加了 M-FA 比表面积.

表 2 2 种粉煤灰的氮吸附特性对比

Table 2 Comparison of N₂ adsorption characteristics of FA and M-FA

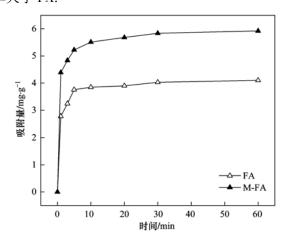
参数	FA	M-FA
比表面积/m ² ·g ⁻¹	9. 39	13. 30
孔体积/μL·g ⁻¹	30. 98	32. 95
平均孔径/nm	13. 19	9. 91

2.2 FA 和 M-FA 的吸附性能

2.2.1 吸附速率和平衡吸附量

图 2 为 FA 和 M-FA 的吸附速率曲线. 从图 2 中可以看出,对于 FA 和 M-FA,吸附平衡均可以在很短的时间内达到. FA 和 M-FA 在前 5 min 时吸附量已经分别达到 3.76 mg·g⁻¹和 5.22 mg·g⁻¹;在 30 min 时吸附量分别达到 4.03 mg·g⁻¹和 5.84 mg·g⁻¹,比 5 min 时分别提高 7% 和 10%;60 min 时吸附量分别是 4.1 mg·g⁻¹和 5.9 mg·g⁻¹,几乎不变,说明 30 min 时可达到平衡. 表 3 列出了 FA 和 M-FA 吸附速率方程、速率 K 和平衡吸附量 q_e 以及方程的线性相关系数 R. 吸附速率方程通式如下.

一级动力学方程(Lagergren):


$$\lg(q_e - q_t) = \lg q_e - \frac{K_1}{2.303}t \tag{3}$$

二级动力学方程:

$$\frac{t}{q_{i}} = \frac{1}{q_{e}}t + \frac{1}{K_{2}q_{e}^{2}} \tag{4}$$

式中, q_t 为时间 t 时吸附容量, $mg \cdot g^{-1}$; $K_1 \setminus K_2$ 分别为一级、二级吸附速率常数,L·min⁻¹, $g \cdot (mg \cdot min)^{-1}$,K 值越大说明吸附速率越快; q_e 为平衡吸附量, $mg \cdot g^{-1}$.

表 3 中, FA 和 M-FA 的一级速率方程的线性相关度 R^2 在 0. 926 ~ 0. 968 内, 二级速率方程 R^2 均大于 0. 999, 说明 FA 和 M-FA 的吸附速率曲线都更符合二级吸附动力曲线. 通过二级动力学方程计算出 FA 和 M-FA 的理论平衡吸附量 q_e 分别为: 4. 22 mg·g⁻¹和 5. 98 mg·g⁻¹, 与上述 60 min 时的实测值 4. 03 mg·g⁻¹和 5. 84 mg·g⁻¹分别相差 4. 7% 和 2. 6%, 说明理论值接近真值. FA 和 M-FA 的 K_1 相等,为 0. 092 L·min⁻¹,而 K_2 分别为 0. 228 g·(mg·min)⁻¹和 0. 246 g·(mg·min)⁻¹. M-FA 比 FA 的理论平衡吸附量提高了 41. 7%, 二级吸附速率常数提高了 7. 9%. 显然,M-FA 的吸附能力和吸附速率大于 FA.

[MB] = 100 mg·L⁻¹, 灰投加量: 10 g·L⁻¹, pH = 6, 150 r·min⁻¹, 30°C

图 2 吸附速率曲线

Fig. 2 Adsorption rate of MB by FA and M-FA

表 3 吸附动力学方程及参数

Table 3 The adsorption kinetic equation and parameters for adsorption on FA and M-FA

	Tubic b The descripti	on nimetre equ	atton and par	ameters for decorption on 111 and 1		
灰种类	一级速率方程	R^2	K_1	二级速率方程	R^2	K_2
FA	$\lg(q_{\rm e} - q_{\rm t}) = -0.04 \ t - 0.036$	0. 926	0. 092	$t/q_t = 0.237 t + 0.246$	0. 999	0. 228
M-FA	$lg(a_1 - a_2) = -0.04 t + 0.124$	0.968	0.092	t/a = 0.167 t + 0.114	1	0.246

2.2.2 吸附等温方程和饱和吸附量

常用的2个吸附等温方程通式如下.

Langmuir 吸附等温式通式:

$$\frac{c_{\rm e}}{q_{\rm o}} = \frac{c_{\rm e}}{Q^0} + \frac{1}{bQ^0} \tag{5}$$

Freundlich 吸附等温式通式:

$$\ln q_e = \frac{1}{n} \ln c_e + \ln K_F \tag{6}$$

式中, q_e : 单位质量吸附剂吸附的吸附质的量, $mg \cdot g^{-1}$; Q^0 :构成单分子层吸附时单位质量吸附剂

的饱和吸附量, $mg \cdot g^{-1}$; c_e :平衡时溶液中剩余吸附质的量, $mg \cdot L^{-1}$; K_F :与温度、吸附剂等因素有关的常数, K_F 越大则吸附能力越大; n:常数,与温度有关的常数,反应了吸附驱动力的大小; b:Langmuir等温吸附方程常数.

对 FA 和 M-FA 分别按 1. 2. 1 方法进行吸附等温线实验,得到一系列平衡吸附量 q_e 和平衡浓度 c_e 数据,分别通过 Langmuir 和 Freundlich 吸附等温模型对 q_e 和 c_e 进行线性拟合,结果见表 4. Freundlich 和 Langmuir 模型的拟合相关系数 R^2 分别在 0. 967 ~ 0. 970 和 0. 995 ~ 0. 998 的范围内,说明 FA 和 M-FA 都更加符合 Langmuir 等温吸附模型. FA、M-FA 的 Langmuir 单分子层饱和吸附量 Q^0 分别为 6. 97 mg·g⁻¹和 7. 10 mg·g⁻¹,说明 FA 和 M-FA 的饱和吸附量相近, M-FA 略大

于 FA. 由上述 2.2.1 节知, M-FA 的理论平衡吸附量和吸附速率较 FA 分别高 41.7% 和 7.9%. 从应用价值来讲, M-FA 的综合吸附性能优于FA.

Langmuir 吸附等温模型还定义了无量纲的分离因子,即平衡参数(R_L),它的大小能够在一定程度上指示吸附过程是否是有利的,其计算式为:

$$R_{\rm L} = \frac{1}{1 + bc_0}$$

式中, c_0 为溶液的初始浓度, $mg \cdot L^{-1}$; $0 < R_L < 1$ 时为有利吸附; $R_L = 0$ 为不可逆吸附. 计算得到 FA 和 M-FA 的 R_L 分别为 0.15 和 0.02,均处于 $0 \sim 1$ 之间,说明 FA 和 M-FA 对亚甲基蓝的吸附为有利吸附,吸附性能比较好,但 M-FA 比FA 更接近不可逆吸附.

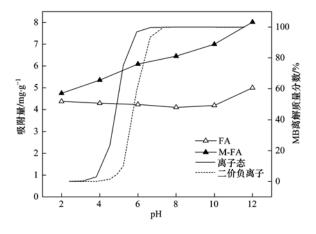

表 4 FA 和 M-FA 对 MB 的吸附热力学方程及参数

Table 4 The adsorption isotherm equations and parameters for adsorption of MB on FA and M-FA

灰种类 —	Langmuii		Freundlich 等温方程拟合						
	方程	Q^0	b	R^2	$R_{ m L}$	方程	$K_{ m F}$	n	R^2
FA	$c_{\rm e}/q_{\rm e}$ = 0. 144 $c_{\rm e}$ + 2. 577	6. 97	0.06	0. 995	0. 15	$\ln q_{\rm e} = 0.260 \ln c_{\rm e} + 0.604$	1. 83	3. 84	0. 967
M-FA	$c_{\rm e}/q_{\rm e}$ = 0. 141 $c_{\rm e}$ + 0. 355	7. 10	0.40	0.998	0.02	$\ln q_{\rm e} = 0.090 \ \ln c_{\rm e} + 1.543$	4. 68	11.05	0.970

2.2.3 pH的影响

图 3 为 pH 为 2~12 范围内 2 种灰吸附量的变 化及 pH 值对 MB 存在形式的影响. 对于 FA,在 pH 为2~8时,随着 pH 的增加,吸附量稍有减小,pH 8 ~10 吸附量增加了 2%, pH > 10 后, 吸附量明显增 大,pH 8 为最低点. FA 在酸性条件吸附量稍有增加 是因为在酸性范围内 FA 中铁、铝等活性质点的溶 出会转变为无机混凝剂,在一定程度上,有助于粉煤 灰的吸附作用[19]. MB 属于阳离子染料[12],其一级 和二级解离平衡常数分别为 $pK_{a_1} = 4.52$ 和 $pK_{a_2} =$ 5.84,通过 MB 的解离平衡方程计算的不同 pH 值下 MB 的离解质量分数见图 3. 由此可知,pH > 8 时 MB 基本上全部以二价离子态的形式存在. 而在碱性条 件下粉煤灰表面带负电荷,对浓度相同的吸附质而 言,其带的正电荷越多,静电吸附越强,所以 pH > 8 时,粉煤灰与 MB 之间静电吸附作用增加,导致使吸 附量增加. 而对于 M-FA, 在 pH 为 2~12 范围内, 吸 附量随 pH 的提高而增大也是因为静电吸附作用. 而 M-FA 在酸性条件下吸附量没有提高的原因是 M-FA 已经酸改性,其表面的铁、铝等活性质点已溶 出,不存在混凝作用.此外,在酸性条件时,H⁺与染 料阳离子竞争 M-FA 表面的吸附电位[20],导致酸性 条件下吸附量下降.

[MB] = 100 mg·L⁻¹, 灰投加量: 10 g·L⁻¹, t = 30 min, 150 r·min⁻¹, 30°C

图 3 pH 的影响

Fig. 3 Effects of pH on the adsorptions of MB by FA and M-FA

2.3 FA 和 M-FA 的 Fenton 再生性能

Fenton 氧化反应机制如下^[21]:

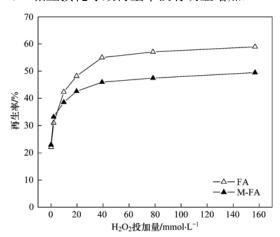
$$H_2O_2 + Fe^{2+} \longrightarrow Fe^{3+} + HO^- + HO \cdot (7)$$

$$Fe^{2+} + HO \cdot \longrightarrow Fe^{3+} + HO^{-}$$
 (8)

$$Fe^{3+} + H_2O_2 \longrightarrow Fe^{2+} + H_2O \cdot + H^+$$
 (9)

$$H_2O_2 + HO \cdot \longrightarrow HOO \cdot + H_2O$$
 (10)

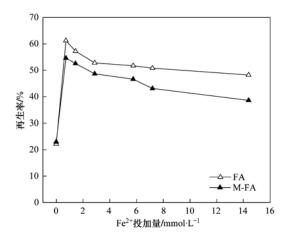
$$HO \cdot + HOO \cdot \longrightarrow H_2O + O_2 \tag{11}$$


$$H_2O_2 \longrightarrow H_2O + 1/2 O_2$$
 (12)

由 MB 氧化反应方程:

$$C_{16}H_{18}CIN_3S \cdot 3H_2O + 55H_2O_2 =$$

$$16CO_2 + 64H_2O + H_2SO_4 + HClO_4 + 3HNO_3$$
(13)


根据粉煤灰对亚甲基蓝的吸附平衡量,计算出 理论上完全氧化亚甲基蓝需要 H,O, 的量为 14.7 mmol·L⁻¹,按理论是 H,O,量的 0.1~10 倍,选择了 0、1.96、9.8、19.6、39.2、78.4 和 156.8 mmol·L⁻¹ 的系列浓度,考察了 H,O, 投加量对再生率的影响, 见图 4,其中 H₂O₂ 投加量为 0 是空白对照. 由图 4 可以看出,再生效率随着 H₂O₂ 投加量的增加而增 大, 但是 H₂O₂ 从 78.4 mmol·L⁻¹ 增加到 156.8 mmol·L⁻¹时,再生率并没有明显增加,在 78.4 mmol·L⁻¹ 时,FA 和 M-FA 的再生率为最佳,分别为 57%、47%. 上述现象可由上述反应式(7)和式 (10)来解释. 由式(7)知,随着 H,O, 投加量的增加, 在 Fe2+ 存在的条件下会促进羟基自由基(·OH)的 生成,从而使再生效率提高,由式(10)知,当 H₂O₂ 投加量过大时, H,O,与·OH 发生副反应,使 H,O, 和·OH 相互损耗导致再生率没有明显增加.

灰投加量: $20 \text{ g} \cdot \text{L}^{-1}$, t = 60 min, 30 °C, pH = 3, [Fe²⁺] = 2.88 mmol·L⁻¹

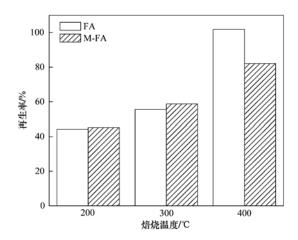
图 4 H_2O_2 投加量对再生率的影响

Fig. 4 $\,$ Effects of ${\rm H_2\,O_2}$ dosage on the percentage regeneration

灰投加量: 20 g·L⁻¹, t = 60 min, 30°C, pH = 3, $[H_2O_2] = 78.4 \text{ mmol·L}^{-1}$

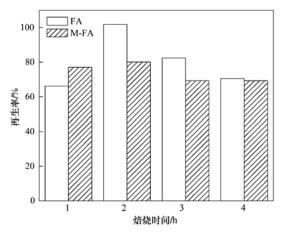
图 5 Fe²⁺ 投加量对再生率的影响

Fig. 5 Effects of Fe²⁺ dosage on the percentage regeneration


·OH,从而使·OH 的利用率下降,导致再生率下降.

吸附 MB 的 FA 和 M-FA 采用 Fenton 氧化再生效率较低,最佳值分别为 61% 和 55%. 据文献[17,22]报道,Fenton 氧化再生活性炭过程中,只有吸附质存在脱附推动力并且不与吸附剂表面发生反应时,才会有较好的再生效果. 按照这种再生机制,吸附 MB 的粉煤灰 Fenton 氧化再生效率较低的原因,一是可能由于部分 MB 与粉煤灰表面发生反应难于解析,二是由于解析 MB 的推动力较低. 由 2. 2. 2 节知,M-FA 吸附过程不可逆吸附趋势大于 FA,因此M-FA 比 FA 的再生率更低.

2.4 FA 和 M-FA 的热再生性能


图 6 为固定焙烧时间 2 h 热再生温度对再生效率影响. 从图 6 可以看出,随着温度由 200℃升高到400℃时,FA 和 M-FA 的热再生效率分别由 44%和45%提高到 102%和 82%. 图 7 为固定焙烧温度400℃热再生时间对再生效率影响. 由图 7 可以看出,在 1~4 h 的焙烧时间内,对 FA 的再生效率影响较大,对 M-FA 的影响不大,最佳焙烧时间为 2 h. 过长时间的焙烧会使 FA 和 M-FA 的再生率稍有下降,可能是由于随着焙烧时间的增加,粉煤灰颗粒表面的多孔性结构的孔道在逐渐坍塌,使比表面积下降、孔径降低.

最佳再生条件(400℃、2 h)下,进行了连续 3 次吸附/热再生实验. FA 再生率随再生次数增加而增加,连续 3 次的再生率分别为 102%、104% 和107%,M-FA 再生率随再生次数增加而减小,连续 3 次的再生率分别为 82%、75% 和74%.由 2.1 知 FA

图 6 焙烧温度对再生率的影响

Fig. 6 Effects of calcination temperature on the percentage regeneration

图 7 焙烧时间对再生率的影响

Fig. 7 Effects of calcination time on the percentage regeneration

与 M-FA 相比,碱性成分较多,颗粒多数为不规则球形聚集体、粒度较大. 因此,随再生次数增加,吸附过程中 FA 的碱性成分会由于水的溶解作用而减小,以致颗粒聚集体解散,从而颗粒粒度变小,比表面积增加,产生了更多的活性位点,这可能是导致 FA 再生率不断增大的主要原因. M-FA 再生率减小,可能是因为热再生过程使酸改性过程中形成的孔道结构较易坍塌,引起结构破坏,吸附性能下降^[23].

3 结论

(1) M-FA 和 FA 的活性成分(SiO_2 、 Al_2O_3 和 Fe_2O_3)的总量分别为 90.6% 和 88.6%, M-FA 高于 FA 相对含量增加, M-FA 和 FA 碱性成分(K_2O 、CaO 和 MgO)总量分别为 6.4% 和 8.3%, M-FA 低于 FA; M-FA 与 FA 相比, 无明显颗粒聚集体, 表观颗粒较小, 颗粒表面有孔道; M-FA 和 FA 比表面积分别为

- 13.3 m²·g⁻¹和 9.4 m²·g⁻¹, M-FA 大于 FA.
- (2) FA 和 M-FA 吸附速率更符合二级吸附速率方程,吸附速率常数分别为 0. 228 和 0. 246, M-FA 的吸附速率大于 FA; FA 和 M-FA 吸附等温方程更符合 Langmuir 等温方程,单分子层饱和吸附量分别为 6. 97 mg·g⁻¹和 7. 1 mg·g⁻¹,平衡吸附量分别为 4. 22 mg·g⁻¹和 5. 98 mg·g⁻¹, M-FA 吸附能力优于FA. 在 pH 2~12 的范围内随 pH 的提高, M-FA 吸附量增大, FA 吸附量缓慢减小至 pH 8 为最低点后明显增大. 静电吸附对吸附量的增减起主要作用.
- (3) Fenton 氧化再生中, FA 和 M-FA 再生率分别可达 61.23% 和 54.6%. 热再生中焙烧温度为 400℃、再生 2 h 时, FA 和 M-FA 的再生率分别为 102%和 82%. 连续 3 次的热再生,随再生次数增加, FA 再生率增加,分别为 102%、104%和 107%, M-FA 再生率减小,分别为 82%、75%和 74%. FA 热再生优于 M-FA, 热再生优于 Fenton 氧化再生. 参考文献:
- [1] Iyer R S, Scott J A. Power station fly ash-a review of value-added utilization outside of the construction industry [J]. Resources Conservation and Recycling, 2001, 31(3): 217-228.
- [2] Wang SB, Wu HW. Environmental-benign utilisation of fly ash as low-cost adsorbents [J]. Journal of Hazardous Materials, 2006, 136(3); 482-501.
- [3] 王金梅, 王庆生, 刘长占, 等. 粉煤灰的改性及吸附作用的研究[J]. 工业用水与废水, 2005, **36**(1): 44-47.
- [4] Wang S B, Boyjoo Y, Choueib A. A comparative study of dye removal using fly ash treated by different methods [J]. Chemosphere, 2005, 60(10): 1401-1407.
- [5] Wang S B, Boyjoo Y, Choueib, et al. Removal of dyes from aqueous solution using fly ash and red mud[J]. Water Research, 2005, 39(1): 129-138.
- [6] Muranaka C T, Julcour C, Wilhelm A M, et al. Regeneration of activated carbon by (Photo)-Fenton oxidation[J]. Industrial and Engineering Chemistry Research, 2010, 49(3): 989-995.
- [7] Milligan M S, Altwicker E R. Chlorophenol reactions on fly ash.
 2. equilibrium surface coverage and global kinetics [J].
 Environmental Science and Technology, 1996, 30 (1): 230-236
- [8] Quan X, Liu X T, Bo L L, et al. Regeneration of acid orange 7-exhausted granular activated carbons with microwave irradiation
 [J]. Water Research, 2004, 38(20): 4484-4490.
- [9] Liu X T, Yu G, Han W Y. Granular activated carbon adsorption and microwave regeneration for the treatment of 2, 4, 5trichlorobiphenyl in simulated soil-washing solution [J]. Journal of Hazardous Materials, 2007, 147(3): 746-751.
- [10] De Las Casas C L, Bishop K G, Bercik L M, et al. In-place regeneration of granular activated carbon using Fenton's reagents [J]. ACS Symposium Series, 2006, 940(4): 43-65.

- [11] Rivera-Utrilla J, Ferro-García M A, Bautista-Toledo I, et al.

 Regeneration of ortho-chlorophenol-exhausted activated carbons with liquid water at high pressure and temperature [J]. Water Research, 2003, 37(8): 1905-1911.
- [12] Wang S B, Li H T, Xie S J, et al. Physical and chemical regeneration of zeolitic adsorbents for dye removal in wastewater treatment[J]. Chemosphere, 2006, 65(1): 82-87.
- [13] 吴彦瑜,郑可,陈东宇,等. Fenton 试剂氧化降解腐殖酸动力学[J]. 环境科学, 2010, **31**(9): 2085-2091.
- [14] Huling S G, Jones P K, Ela W P, et al. Fenton-driven chemical regeneration of MTBE-spent GAC [J]. Water Research, 2005, 39(10): 2145-2153.
- [15] Huling S G, Hwang S. Iron amendment and Fenton oxidation of MTBE-spent granular activated carbon [J]. Water Research, 2010, 44(8): 2663-2671.
- [16] Toledo L C, Silva A C B, Augusti R, et al. Application of Fenton's reagent to regenerate activated carbon saturated with organochloro compounds [J]. Chemosphere, 2003, 50 (8): 1049-1054.

- [17] Mourand J T, Crittenden J C, Hand D W, et al. Regeneration of spent adsorbents using homogeneous advanced oxidation [J]. Water Environment Research, 1995, 67(3): 355-363.
- [18] 陈玲,赵建夫,陈岳松.活性炭湿式氧化再生效率评价方法 [J]. 环境科学,2001,22(1):32-36.
- [19] 赵剑宇,田凯,曹文. 粉煤灰吸附亚甲基蓝的吸附性能研究[J]. 云南民族大学学报(自然科学版),2006,15(2):138-140.
- [20] 龚兵丽, 邱宇平, 赵雅萍, 等. 黑碳吸附亚甲基蓝染料废水的行为研究[J]. 环境科学与技术, 2009, **32**(11): 18-23.
- [21] Wang H Y, Hu Y N, Cao G P, et al. Degradation of propylene glycol wastewater by Fenton's reagent in a semi-continuous reactor [J]. Chemical Engineering Journal, 2011, 170(1): 75-81.
- [22] González J F, Encinar J M, Ramiro A, et al. Regeneration by wet oxidation of an activated carbon saturated with p-nitrophenol [J]. Industrial and Engineering Chemistry Research, 2002, 41 (5): 1344-1351.
- [23] 黄琴, 吉伟英, 沉端伟. 改性粉煤灰在废水处理中的应用进展[J]. 上海应用技术学院学报(自然科学版), 2008, 8 (1): 71-75.

HUANJING KEXUE

Environmental Science (monthly)

Vol. 33 No. 7 Jul. 15, 2012

CONTENTS

Isotopic Composition and Isotope Tracing of Sulfur in Atmospheric Precipitation at the Head Area of the Three Gorges Reservoir, Characterization and Reconstruction of Aerosol Light Scattering Coefficient at Chengdu During Biomass Burning and Dust Storm	
Characterization and reconstruction of Actosof Eight Scattering Coefficient at Chengul During Diomass Durining and Dust Storin	······················· YUE Jian-hua. TAO Jun. LIN Ze-ijan. et al. (21
Aerosol Optical Thickness of the Atmospheric Aerosol over Taihu Lake and Its Features; Results of In-site Measurements Seasonal Variations in the Vertical Distribution of Aerosols During Dry Haze Periods in Regions Around Shanghai	······· RAO Jia-wang, MA Rong-hua, DUAN Hong-tao, et al. (21
Size Distributions and Diurnal Variations in the Concentrations of Polycyclic Aromatic Hydrocarbons in Winter in Urban and Sul-	burban Nanjing, China ·····
seasonal Distribution of Water-Soluble Inorganic Ions in the Atmospheric Aerosol in Qingdao Collution Characteristics of Microbial Aerosols Generated from a Municipal Sewage Treatment Plant	
Estimation of the Effect Derived from Wind Erosion of Soil and Dust Emission in Tianjin Suburbs on the Central District Based of Variation of Nutrient Concentrations at the Inshore Coastal Area of Northern Jiangsu Province and the Occurrence of Green Tide	
anation of Nutrient Concentrations at the institute Coastal Area of Nothern Jiangsu Frontier and the Occurrence of Green Ende	
analysis on Characteristics of Red Tide in Fujian Coastal Waters During the Last 10 Years	LI Xue-ding (22
Review on HSPF Model for Simulation of Hydrology and Water Quality Processes	
arameter Uncertainty Analysis for Urban Rainfall Runoff Modelling	HUANG Jin-liang, LIN Jie, DU Peng-fei (22
stimation of DOC Concentrations Using CDOM Absorption Coefficients; A Case Study in Taihu Lake	JIANG Guang-jia, MA Rong-hua, DUAN Hong-tao (22
/eight Parameters of Water Quality Impact and Risk Grade Determination of Water Environmental Sensitive Spots in Jiashan ··	
iurnal Variation and Evaluation of Water Quality in Different Seasons of Panxi River in Chongqing	
esponses of Wetland Water Quality to Influence the Strengthness of Urbanization in Nanjing, China	
udies on Relationship of Phytoplankton and Water Environmental Factors in Shahu Lake	
fluence on the Spatial Distribution of Fish in Taizi River Basin by Environmental Factors at Multiple Scales	
omparison and Application of Biological Indices of Macroinvertebrates in River Health Assessment	
oatial and Temporal Distribution of Total Mercury (T-Hg) in Different Water Bodies of Nam Co, Tibetan Plateau	
emporal and Spatial Variations of Major Ions in Nam Co Lake Water, Tibetan Plateau	
ttrophication Control in Local Area by Physic-ecological Engineering trogenous Fluxes and Its Self-Purification Capacity in Lake Taihu	
rrogenous Fluxes and its Self-Purification Capacity in Lake Tainu sponse of Phosphorus Components in Sediments from Eutrophic Lake to External Sulfate	
atial Distribution Character of Phosphorus Fractions in Surface Sediment from Chaohu Lake	
ng-range Transport Potential of Typical Organic Pollutants in Nanjing	
stribution of Black Carbon in the Surface Sediments of the East China Sea and Their Correlations with Persistent Organic Pollu	
ontamination Characteristics of Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Water from Jialing River in Chongqing ·	
evels, Distribution and Possible Sources of Polychlorinated Biphenyls in River Sediments from an Electronic Waste Recycling	
ssessment Model for Heavy Metal Pollution in Sediment Based on Trapezoidal Fuzzy Numbers and Case Study	0
apact of Coastal Exploitation on the Heavy Metal Contents in the Sediment of Bohai Bay	
natial Distribution and Contamination Evaluation of Heavy Metals in the Intertidal Surface Sediments of Eastern Chongming	
peciation and Vertical Distribution of Heavy Metals in Sediments of Baiyangdian Lake	
VS Concentrations in Xinan Creek and the Influencing Factors	
echanism of NH ₄ ⁺ -N Removal in Drinking Water Biofilter	
naracterization and Thermodynamic Properties of Cu(II) Imprinted Chitosan Crosslinked Membrane	
udies on the Degradation of Paracetamol in Sono-electrochemical Oxidation	
udy on Treatment of Methylene Blue Wastewater by Fly Ash Adsorption-Fenton and Thermal Regeneration	
ectricity Generation Performance of Two-Chamber Microbial Full Cell in the Treatment of Simulated Wastewater	
eparation and Characterization of Zn/Cr-LDHs and Their Removal Performances of Reactive Brilliant Orange X-GN	
ansport Processes of Low-level Radioactive Liquid Effluent of Nuclear Power Station in Closed Water Body	
alysis of Carbon Balance and Study on Mechanism in Anoxic-Oxic-Settling-Anaerobic Sludge Reduction Process ect of Mixed Carbon Sources in the Granulation Process of EBPR System	
ect of Mixed Carbon Sources in the Granulation Process of EBPR System ocatalyst of Redox Mediators on the Denitrification by Paracoccus versutus Strain GW1	
lation of a High Hydrogen-producing Mutant TB34 Generated by Transposon Insertion and Analysis of Hydrogen Production	· · · · · · · · · · · · · · · · · · ·
ndition Optimization for Degradation of Chlorophenols Using Laccase from Amillariella mellea	
aracterization of CH ₄ , N ₂ O Emission and Selection of Rice Cultivars in Double Cropping Rice Fields · · · · · · · · · · · · · · · · · · ·	
ort-term Effects of Exogenous Nitrogen on CH ₄ and N ₂ O Effluxes from Cyperus malaccensis Marsh in the Min River Estuary	
mporal-spatial Variations of Total Nitrogen in the Degraded Grassland of Three-River Headwaters Region in Qinghai Province	• • • • • • • • • • • • • • • • • • • •
mporal Variations of Clay Content in Eroded Sediment Under Different Rainfall Condition	
ffects of Soil Properties on the Stabilization Process of Cadmium in Cd Alone and Cd-Pb Contaminated Soils	
-situ Remediation of Polychlorinated Biphenyls Polluted Soil by Ecological Controlling Measures: A Field Trial	
haracterization Comparison of Polycyclic Aromatic Hydrocarbon Uptake by Roots of Different Crops	LIANG Xiao, ZHAN Xin-hua, ZHOU Li-xiang (25
haracteristics and Mechanism of Sodium Removal by the Synergistic Action of Flue Gas and Waste Solid	
Decomposition Model of Energy-Related Carbon Emissions in Tertiary Industry for China	LU Yuan-qing, SHI Jun (25

《环境科学》第6届编辑委员会

主 编:欧阳自远

副主编:赵景柱 郝吉明 田 刚

编 委:(按姓氏笔画排序)

万国江 王华聪 王凯军 王绪绪 田 刚 田 静 史培军

朱永官 刘志培 汤鸿霄 陈吉宁 孟 伟 周宗灿 林金明

欧阳自远 赵景柱 姜 林 郝郑平 郝吉明 聂永丰 黄 霞

黄耀 鲍强潘纲潘涛魏复盛

环维种草

(HUANJING KEXUE)

(月刊 1976年8月创刊) 2012年7月15日 33卷 第7期

ENVIRONMENTAL SCIENCE

(Monthly Started in 1976)

Vol. 33 No. 7 Jul. 15, 2012

主	管	中国科学院	Superintended	by	Chinese Academy of Sciences
主	办	中国科学院生态环境研究中心	Sponsored	by	Research Center for Eco-Environmental Sciences, Chinese
协	办	(以参加先后为序)			Academy of Sciences
		北京市环境保护科学研究院	Co-Sponsored	by	Beijing Municipal Research Institute of Environmental
		清华大学环境学院			Protection
主	编	欧阳自远			School of Environment, Tsinghua University
编	辑	《环境科学》编辑委员会	Editor-in -Chief		OUYANG Zi-yuan
⊃mj	7-7	北京市 2871 信箱(海淀区双清路	Edited	by	The Editorial Board of Environmental Science (HUANJING
		18号,邮政编码:100085)			KEXUE)
		电话:010-62941102,010-62849343			P. O. Box 2871, Beijing 100085, China
		传真:010-62849343			Tel: 010-62941102,010-62849343; Fax: 010-62849343
		E-mail; hjkx@ rcees. ac. cn			E-mail: hjkx@ rcees. ac. cn
		http://www.hjkx.ac.cn			http://www. hjkx. ac. cn
出	版	4 4 4 k 社	Published	by	Science Press
щ	/IX	北京东黄城根北街 16 号			16 Donghuangchenggen North Street,
		邮政编码:100717			Beijing 100717, China
印刷装	ìΤ	北京北林印刷厂	Printed	by	Beijing Bei Lin Printing House
发	行	舒学出版社	Distributed	by	Science Press
		电话:010-64017032			Tel:010-64017032
		E-mail: journal@ mail. sciencep. com			E-mail: journal@ mail. sciencep. com
订 购	处	全国各地邮电局	Domestic		All Local Post Offices in China
国外总发	対行	中国国际图书贸易总公司	Foreign		China International Book Trading Corporation (Guoji
		(北京 399 信箱)			Shudian), P. O. Box 399, Beijing 100044, China

中国标准刊号: ISSN 0250-3301 CN 11-1895/X

国内邮发代号: 2-821

国内定价:70.00元

国外发行代号: M 205

国内外公开发行