

(HUANJING KEXUE)

ENVIRONMENTAL SCIENCE

第32卷 第12期

Vol.32 No.12

2011

中国科学院生态环境研究中心 主办

斜学出版社 出版

排 始 算 (HUANJING KEXUE)

ENVIRONMENTAL SCIENCE

第32卷 第12期 2011年12月15日

目 次

序)
我国工业 VOCs 减排控制与管理对策研究 ················· 王海林,张国宁,聂磊,王宇飞,郝郑平(3462	()
我国 VOC 类有毒空气污染物优先控制对策探讨 陈颖,李丽娜,杨常青,郝郑平,孙汉坤,李瑶(3469)
工业固定源 VOCs 治理技术分析评估 ····································	(
工业挥发性有机物排放控制的有效途径研究 江梅,张国宁,魏玉霞,邹兰,张明慧(3487	')
台湾地区 VOCs 污染控制法规、政策和标准 ····································)
国外固定源 VOCs 排放控制法规与标准研究 张国宁, 郝郑平, 江梅, 王海林(3501)
挥发性有机物税收政策对我国经济的影响分析 刘昌新,王宇飞,王海林,郝郑平,王铮(3509	,)
民用生物质燃烧挥发性有机化合物排放特征 李兴华,王书肖,郝吉明(3515	
北京及周边地区大气羰基化合物的时空分布特征初探 王琴、邵敏、魏强、陈文泰、陆思华、赵越(3522	()
北京及周边地区大气羰基化合物的时空分布特征初探 ··················· 王琴, 邵敏,魏强,陈文泰,陆思华,赵越(3522 北京市 BTEX 的污染现状及变化规律分析 ····································)
上海城区典型污染过程 VOCs 特征及臭氧潜势分析 崔虎雄、吴迈名、高松、段玉森、王东方、张懿华、伏晴艳(3537	<u>,</u>
上海城区典型污染过程 VOCs 特征及臭氧潜势分析 崔虎雄,吴迓名,高松,段玉森,王东方,张懿华,伏晴艳(3537长沙大气中 VOCs 研究 刘全,王跃思,吴方堃,孙杰(3543	Ó
佛山灰霾期挥发性有机物的污染特征 马永亮,谭吉华,贺克斌,程远,杨复沫,余永昌,谭赟华,王洁文(3549	, ()
深圳市显著排放 VOCs 的园林植物调查与分析	/
	()
北京地区城乡结合部大气挥发性有机物污染及来源分析 周裕敏,郝郑平,王海林(3560	
北京城乡结合地空气中挥发性有机物健康风险评价 周裕敏,郝郑平,王海林(3566	
城市污水处理厂恶臭挥发性羰基化合物的排放特征 周咪,王伯光,赵德骏,张春林,古颖纲(3571	
城市污水处理厂挥发性卤代有机物的排放特征及影响因素研究 何洁,王伯光,刘舒乐,赵德骏,唐小东,邹宇(3577	
城市污水处理厂恶臭挥发性有机物的感官定量评价研究 刘舒乐,王伯光,何洁,唐小东,赵德骏,郭薇(3582	
植物释放挥发性有机物(BVOC)向二次有机气溶胶(SOA)转化机制研究 ···········李莹莹, 李想, 陈建民(3588 NO ₃ 自由基与 3 种环醚的大气化学反应动力学研究 ····································	ソー
3-甲基-3-丁烯基-1-醇与硫酸/过氧化氢混合溶液的吸收反应研究 王天鹤,刘泽,葛茂发,王炜罡(3599	
水中挥发性有机物的分析方法综评	<i>!)</i>
新型动态针捕集阱技术分析大气中低浓度的 VOCs ····································	<i>)</i>
人气中忌拌及性有机硫化物检测方法的研究 ····································)
)
膜进样-单光子电离/化学电离-质谱仪在线检测水中 VOCs	
花磊,吴庆浩,侯可勇,崔华鹏,陈平,赵无垛,谢园园,李海洋(3628	·)
工业园区 TVOC 和恶臭的电子鼻检测技术研究 田秀英,蔡强,叶朝霞,郭威,卢岩文,张永明(3635	
电子鼻检测污染土壤中挥发性氯代烃的适用性研究 卜凡阳,文晓刚,万梅,刘锐,蔡强,陈吕军,张永明(3641	
工业管道中丙烯酸酯类物质的监测与分析)
硅改性制备疏水性沸石分子筛蜂窝体 ····································	.)
氧化锰八山体分于师的合成及具对本催化氧化性能)
蜂窝状活性炭对 VOCs 的吸-脱附性能研究 韩忠娟,罗福坤,李泽清(3662	
混合气体直接吸附分离回收过程研究 王红玉, 羌宁, 胡瑕(3667	
生物滴滤降解氯苯废气的实验研究 周卿伟,朱润晔,胡俊,张丽丽,陈建孟(3673	
复合吸收技术净化复杂工业有机废气 陈定盛,岑超平,唐志雄,方平,陈志航(3680	
烘房 VOCs 废气治理技术路线探析 ************************************	
Co ₃ O ₄ 纳米棒的制备及其对气相甲苯的催化氧化	
Si 掺杂 TiO ₂ 纳米管阵列制备、表征及其光催化氧化降解室内典型 VOCs	
基于现场试验的石油类污染物自然衰减能力研究	
膜分离法处理加油站油气的研究	
机动车加油过程中气液两相流动特性的 CFD 数值模拟 陈家庆,张男,王金惠,朱玲,尚超(3710	
《环境科学》第 32 卷(2011 年)总目录)
《环境科学》征稿简则(3679) 《环境科学》征订启事(3684) 信息(3554,3616,3622,3672)	

植物释放挥发性有机物(BVOC)向二次有机气溶胶(SOA)转化机制研究

李莹莹,李想*,陈建民

(复旦大学环境科学与工程系,上海 200433)

摘要:利用自制玻璃生态罩,研究植物挥发性有机物(BVOC)的释放机制. 在紫外光诱导条件下,BVOC 经历一系列的光氧化反应,最终产生了二次有机气溶胶(SOA). 运用固相微萃取(SPME)和气相色谱-质谱联用(GC-MS)技术,对目标植物(驱蚊草)释放出的 BVOC 进行采样分析,共检测出 7 种主要化合物,其中主要为单萜类、倍半萜类、醇类和酮类物质. 研究发现,在紫外光的照射下,这些 BVOC 可以发生光氧化反应转化为 SOA. 利用串联差分淌度分析仪(TDMA)测定 SOA 的粒径分布和 SOA 颗粒物的吸湿性. 结果表明粒径范围大致是 50~320 nm,吸湿性研究发现这些 SOA 具有吸湿性,生长因子可以从 1.05 增长到 1.11.

关键词:二次有机气溶胶;挥发性有机物;驱蚊草;固相微萃取;气相色谱质谱

中图分类号: X511 文献标识码: A 文章编号: 0250-3301(2011)12-3588-05

Study on Transformation Mechanism of SOA from Biogenic VOC Under UV-B Condition

LI Ying-ying, LI Xiang, CHEN Jian-min

(Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China)

Abstract: A laboratory study was carried out to investigate the biogenic volatile organic compounds (BVOC) in a lab-made glass chamber. The secondary organic aerosol (SOA) products can be detected under the UV photooxidation of BVOC. Pelargonium × Citrenella was chosen as the target plant in this research because it can release a large amount of BVOCs. The predominant 7 alkene and ketol compounds were detected by using solid phase microextraction (SPME) sampling and gas chromatography/mass spectrometry (GC/MS) analysis. The photochemical experiment indicated that these BVOC can be rapidly oxidized into SOA under UV-B irradiation. A tandem differential mobility analyzer (TDMA) was used to measure the size distribution and the hygroscopicity of the SOA. The particle diameter was in the range of 50 nm to 320 nm. The high hygroscopicity of SOA was also obtained and the size increased from 1.05 to 1.11 during the wet experiment.

Key words: secondary organic aerosols (SOA); volatile organic compounds (VOCs); *Pelargonium* × *Citrenella*; solid phase microextraction (SPME); GC/MS

植物释放的天然源挥发性有机物(BVOC)占全球 VOCs 排放的 90%以上^[1,2],其全球释放量巨大.因 BVOC 所含的不饱和键具有高反应活性,它们在大气中易发生光氧化反应^[3],其高的化学活性影响低层大气的化学组成. 植物挥发性有机物主要是通过植物叶片散发到空气中,不同植物释放的挥发性有机物组成成分有明显的差异. 据估计,在自然界中,植物挥发性有机物的组成十分丰富,种类大约10 000种^[4],比较常见的如异戊二烯、单萜、倍半萜、烷烃、烯烃、酮类、醇类、酯类、醛类等^[5,6]. 挥发性有机化合物包括天然源 VOCs(如异戊二烯和单萜类等)和人为源 VOCs(如芳香族化合物)与大气中主要的氧化剂,如 O₃、·OH等,发生光氧化反应,生成挥发性略低、极性略强的羟基和酯类化合物,再进一步氧化形成氢键的挥发性更低的醇类和羧酸类化合

物,经气态/粒子态转化凝结形成亚微粒子,分配到颗粒相,生成的悬浮于大气中的固体或液体微粒,被称为二次有机气溶胶(secondary organic aerosol, SOA)^[7-9].与一次有机物相比,二次有机物具有更强的极性、吸湿性和溶解性,对气溶胶的光学性质、成核能力、健康效应等有更大影响^[10].

植物源 VOCs 是 SOA 形成的重要前体物^[11],对 大气化学产生重要的影响^[12~14].已有一些研究表明 VOCs 在大气中可以形成 SOA,如 Claeys 等^[15]在考 察亚马逊河雨林自然界气溶胶时的研究表明,异戊 二烯的光氧化产物,可以在气溶胶颗粒上凝聚. SOA

收稿日期:2011-05-09;修订日期:2011-07-25

基金项目:高等学校博士学科点专项科研基金项目 (20070246029); 国家自然科学基金项目 (21177025)

作者简介:李莹莹(1983~),女,博士研究生,主要研究方向为城市绿地与生态, E-mail;lyyforward@gmail.com

* 通讯联系人, E-mail: lixiang@ fudan. edu. cn

的形成是当今大气化学过程研究热点之一,对探讨区域和全球大气化学,气候变化和环境效应等都有非常重要的意义^[16,17]. SOA 形成过程中的影响因素极其复杂且处于不停的变化中,因此几乎不可能完全在实验室中模拟. Odum 等^[18]和 Ruppert 等^[19]通过烟雾箱模拟实验,在不同人为控制条件下,研究了SOA 相关产物及形成机制. 目前人们对二次有机气溶胶形成机制的认识还较为浅薄,数学模式模拟和经验估计仍是对机制认识的重要手段.

由于驱蚊草(Pelargonium × Citrenella)在常温下能释放出大量的 BVOCs, 具有驱蚊避虫的效果^[20]. 所以本研究选取驱蚊草作为目标植物,利用串联差分淌度分析仪(Tandem Differential Mobility Analyzer, TDMA)和气相色谱-质谱联用仪(Gas Chromatography-Mass Spectrometer, GC-MS)对它释放出的 BVOCs 进行分析鉴定,并研究这些 BVOCs 向SOA 转化的机制.

1 材料与方法

1.1 供试材料

牻牛儿苗科植物驱蚊草一盆,生长良好,购于上海市花卉市场.驱蚊草是非洲的牻牛儿苗科天竺葵属的天竺葵(Pelargonium graveolens)和中国的禾本科香茅属香茅草(Cymbopogn citrated)细胞融合的产物,融合了天竺葵植物和含香茅醛植物的香味物质.以上2种植物香味的融合,通过天竺葵具有的挥发性特点使香茅醛物质的香分子随之散发,达到驱避蚊虫、净化空气的作用.

1.2 实验仪器

串联差分淌度分析仪(TDMA),固相微萃取(solid phase microextraction,SPME)装置,配手柄和涂有厚度为 65 μ m 的 PDMS/DVB 纤维的萃取头(美国 Supelco 公司);气相色谱-质谱联用仪(GC-MS),配 Agilent 6890 气相色谱仪,MSD 检测器(HP 5973),HP-5MS(30 m × 0.32 mm × 0.25 μ m)色谱柱;宽范围粒径谱仪(WPS-1000XP 型,美国 MSP公司生产);3 W 紫外灯;自制玻璃生态罩.

1.3 SPME 萃取方法

将驱蚊草放入玻璃生态罩中,密闭(本研究仅进行 VOCs 半定量研究,因此生态罩壁效应忽略不计). 开动玻璃生态罩内风扇,使其释放的 VOCs 分布均匀. 然后插入 SPME 对 VOCs 进行顶空萃取,一定时间后,取出进而插入 GC/MS 热解析,得到 VOCs 谱图.

1.4 GC-MS 分析条件

GC 条件: 进样口温度250℃, 起始温度40℃, 以6℃·min⁻¹ 升至100℃,以10℃·min⁻¹ 升至150℃, 再以6℃·min⁻¹升至180℃, 再以30℃·min⁻¹升至300℃保持 2 min. 载气为 He 气, 流速: 1. 0 mL·min⁻¹, 无分流.

MS 条件:电离方式 EI,电离能量 70 eV,离子源温度230℃,扫描范围 40~300 u.

1.5 气溶胶吸湿性谱仪

用复旦大学自行搭建的气溶胶吸湿性谱仪 (hygroscopic tandem differential mobility analyzers, HTDMA)^[21]分析 SOA 的吸湿增长因子. 测试粒径 100 nm,相对湿度 80%. 由于气溶胶的拖尾和扩散效应以及多电荷干扰, HTDMA 测定的粒子吸湿增长分布曲线对真实的气溶胶吸湿增长因子分布函数发生扭曲和偏离,因此本研究采用 TDMAinv 反演获取真实吸湿增长因子^[22].

1.6 数据统计分析

对 BVOC 的成分分析采用面积归一化法. 所有实验数据用 Microsoft Excel 2003 和 Origin 7.5 统计软件分析.

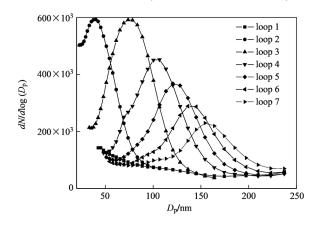
2 结果与讨论

2.1 驱蚊草释放产物的分析

利用固相微萃取(SPME)技术顶空采集驱蚊草 释放的 VOCs, 然后进行 GC-MS 分析, 结果见表 1. 经人工解析及 NISI27 和 NIST147 标准谱库检索,按 各色谱峰的质谱碎片图与文献核对,对基峰、质荷比 和相对丰度等方面进行直观比较,确定7种主要化 学成分,并用面积归一化法,测定出相对含量.分析 结果表明驱蚊草释放出的物质主要是单萜类、倍半 萜类、醇类、酮类物质等. 其中单萜类物质如香茅醇 (6-Octen-1-ol, 3, 7-dimethyl-, (R)-)和胡薄荷酮 (Cyclohexanone, 5-methyl- 2-(1-methylethyl)-, trans-),香茅醛(6-Octenal, 3, 7-dimethyl-, (R)-), β-蒎烯(β-Pinene) 占总数的 51.4%; 酯类物质甲酸 香茅酯(6-Octen-1-ol, 3, 7-dimethyl-, formate),占 总数的 28.2%; 倍半萜类物质愈创木烯(Azulene, 1, 2, 3, 4, 5, 6, 7, 8-octahydro-1, 4-dimethyl-7-(1methylethylidene)-, (1S-cis)-)占总数的 10.8%;另 外还有烃类物质 1, 2, 5, 5-四甲基-1, 3-环戊二烯 (1, 2, 5, 5-tetramethyl-1, 3-Cyclopentadiene) 占总 数的 9.6%.

2.2 SOA 颗粒物粒径分布特征

表 1 北江径流中有机碳和总悬浮物含量


Table 1 Contents of OT and TSS in Beijiang Rever Drainage

## 化合物名称				, 0	0			
2 14.88 1,2,5,5-四甲基-1,3-环戊二烯(1,2,5,5-C ₉ H ₁₄ 122 38 34.1 9.6 3 15.45 香茅醛(6-Octenal, 3, 7-dimethyl-, (R)-) C ₁₀ H ₁₈ O 154 97 19.6 5.5 4 15.85 胡 薄 荷 酮 (Cyclohexanone, 5-methyl- 2-(1-methylethyl)-, trans-) C ₁₀ H ₁₈ O 154 98 66.1 18.6 5 16.87 香茅醇(6-Octen-1-ol, 3, 7-dimethyl-, (R)-) C ₁₀ H ₂₀ O 156 96 84.4 23.8 6 17.71 甲酸 香 草 酯 (6-Octen-1-ol, 3, 7-dimethyl-, Grandethyl-, Gra	编号		化合物名称	分子式		准确度		相对含量 /%
2 14.88 tetramethyl-1,3-Cyclopentadiene) C ₉ H ₁₄ 122 38 34.1 9.6 3 15.45 香茅醛(6-Octenal, 3, 7-dimethyl-, (R)-) C ₁₀ H ₁₈ O 154 97 19.6 5.5 4 15.85 胡 薄 荷 酮 (Cyclohexanone, 5-methyl- 2-(1-methyl-tylohyl)-, trans-) C ₁₀ H ₁₈ O 154 98 66.1 18.6 5 16.87 香茅醇(6-Octen-1-ol, 3, 7-dimethyl-, (R)-) C ₁₀ H ₂₀ O 156 96 84.4 23.8 6 17.71 甲酸 香 草 酯 (6-Octen-1-ol, 3, 7-dimethyl-, (R)-) C ₁₁ H ₂₀ O ₂ 184 97 100.00 28.2 7 20.48 愈创木烯(Azulene,1,2,3,4,5,6,7,8-octahydro-fyrame) CH 204 81 38.5 10.8	1	11. 02	β-蒎烯(β-Pinene)	$C_{10}H_{16}$	136	95	12. 3	3. 5
4 15.85 胡 薄 荷 酮 (Cyclohexanone, 5-methyl- 2-(1-methylethyl)-, trans-) C ₁₀ H ₁₈ O 154 98 66.1 18.6 5 16.87 香茅醇(6-Octen-1-ol, 3, 7-dimethyl-, (R)-) C ₁₀ H ₂₀ O 156 96 84.4 23.8 6 17.71 甲酸 香 草 酯 (6-Octen-1-ol, 3, 7-dimethyl-, formate) C ₁₁ H ₂₀ O ₂ 184 97 100.00 28.2 7 20.48 愈创木烯(Azulene,1,2,3,4,5,6,7,8-octahydro- cu-Harman and	2	14. 88		C_9H_{14}	122	38	34. 1	9. 6
4 15.85 methylethyl)-, trans-) C ₁₀ H ₁₈ O 154 98 66.1 18.6 5 16.87 香茅醇(6-Octen-1-ol, 3, 7-dimethyl-, (R)-) C ₁₀ H ₂₀ O 156 96 84.4 23.8 6 17.71 甲酸香草酯(6-Octen-1-ol, 3, 7-dimethyl-, formate) C ₁₁ H ₂₀ O ₂ 184 97 100.00 28.2 7 20.48 愈创木烯(Azulene,1,2,3,4,5,6,7,8-octahydro- cu-th-) 20.4 81 38.5 10.8	3	15. 45	香茅醛(6-Octenal, 3, 7-dimethyl-, (R)-)	$\mathrm{C_{10}H_{18}O}$	154	97	19. 6	5. 5
日 で 日 で 日 で 日 で 日 で 日 で 日 で 日 で 日 で 日 で	4	15. 85		$\mathrm{C}_{10}\mathrm{H}_{18}\mathrm{O}$	154	98	66. 1	18. 6
6 17.71 formate)	5	16. 87	香茅醇(6-Octen-1-ol, 3, 7-dimethyl-, (R)-)	$\mathrm{C}_{10}\mathrm{H}_{20}\mathrm{O}$	156	96	84. 4	23. 8
7 70 /8 1 38 5 10 8	6	17. 71	•	$C_{11}H_{20}O_2$	184	97	100.00	28. 2
1,4-dimethyl- /-(1-methylethylidene)-,(15-cts)-)	7	20. 48	愈创木烯 (Azulene,1,2,3,4,5,6,7,8-octahydro-1,4-dimethyl-7-(1-methylethylidene)-,(1S-cis)-)	$C_{15} H_{24}$	204	81	38. 5	10. 8

将一盆驱蚊草放于玻璃生态罩内,放置 1 h 之后,用 TDMA 采样一次,作为周期(loop)1.接着在封闭的玻璃生态罩内,打开 3 W 的紫外灯(UV-B)照射,10 min 后,产生大量的臭氧.驱蚊草释放出的BVOC与臭氧很快发生光氧化反应,进而可能形成SOA.为了研究 VOCs 反应生成 SOA 的转化机制,对生成物质的粒径进行研究.用 TDMA 持续采样 12 次(loop 2···13),每个周期为 73 s +130 s,TDMA 的流量为 1 L·min⁻¹.实验所得结果如图 1. loop 1 显示没有颗粒存在于玻璃生态罩内,而从 loop 2 开始,TDMA 检测到新颗粒物生成,而且随着时间的推移,

粒径逐渐变大,由 50 nm 增长到 320 nm,数浓度不断减少.这是因为在 loop 1 时,没有紫外灯的照射,驱蚊草在玻璃生态罩内释放出的 VOCs 存在于气相中,通过 TDMA 无法检测到.用紫外灯照射后,会有大量的臭氧产生,驱蚊草释放出的 VOCs 发生光氧化反应,不断被臭氧氧化,浓度不断降低.而当这些光氧化的产物在达到一定浓度后,经气-粒转化会形成 SOA. 因此随着照射时间的延长,光化学反应不断进行,气溶胶浓度逐渐升高,粒径分布不断向粒径增大方向偏移.

随着采样时间的延长,粒径分布峰值逐渐向粒

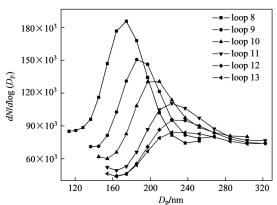


图 1 反应前后的粒径分布

Fig. 1 Change of particle size distribution during the reaction

径增大的方向缩量移动. 在反应初期,新生粒子表面能高,碰并生长的趋势较大. 根据碰并理论模拟计算的结果显示,观测到的粒径分布变化和理论模拟结果基本一致. 这说明颗粒的碰并增长是 SOA 粒径分布发生变化的最主要原因.

2.3 光化学反应形成 SOA 机制研究

以蒎烯为代表的萜烯类大气氧化研究表明,就

生成 SOA 总量的相对重要性来说, 萜烯与 O_3 的反应明显比与 OH 自由基和 NO₃ 自由基的反应重要 [23]. 以在 O_3 氧化剂条件下为例, SOA 形成的机制主要有 3 个关键步骤, 包括: 在 O_3 氧化作用下, 形成烷基自由基($R\cdot$); $RO_2\cdot$ 与 $HO_2\cdot$ 自由基的反应; $RO\cdot$ 反应, 包括分解、异构化以及与 O_2 反应. 烯烃和 O_3 的反应主要是双键加成, 生成一个初级臭氧化物

或者分子臭氧化物的五元环氧化合物,该环状化合物迅速发生分解生成羰基化合物和激发态羰基氧化物(Criegee 中间体)^[24].同时,生成较稳定的醛和酮,醛和酮等羰基类化合物可以通过多种途径形成SOA^[25].

以驱蚊草释放单萜类物质 β -蒎烯为例,进行 VOCs 发生光化学反应像 SOA 转化机制分析. β -蒎烯与 O₃ 主要发生加成反应,在起始阶段是引发 C — C 双键的加成反应,生成高能量的初级臭氧化物,接着快速分解形成羰基化合物和 Criegee 双自由

基(SCI). 双自由基通过异构化、分解、分子重排等过程 跟 水 作 用 形 成 半 挥 发 性 产 物 蒎 酮 醛 (Pinonaldehyde),进而 SCI 与蒎酮醛等羰基化合物可生成二级臭氧化物^[26],最终生成多种不挥发的羧酸、二羧酸类化合物,如蒎酮酸(Pinonic acid)、蒎酸(Pinic acid)、降蒎酮醛(Norpinic acid)等产物^[27](图 2). 由这些化合物的化学性质,可以推测它们易形成分子内和分子间聚合物;也可能进一步和 β-蒎烯的初级氧化产物反应,使向颗粒相的转化更容易发生.

图 2 推测的 β -蒎烯和 O_3 的氧化反应机制

Fig. 2 Proposed mechanism of oxidation reaction of β -Pinene with O_3

2.4 SOA 颗粒物的吸湿性研究

吸湿性是指气溶胶在周围环境相对湿度增加时的吸水能力,是气溶胶的主要性质之一^[28].为了研究 SOA 的吸湿性,笔者将一盆驱蚊草放在玻璃生态罩内,1 h之后,打开3 W的紫外灯,持续照射10 min,选取100 nm 的颗粒物在相对湿度80%条件下做加湿TDMA实验,持续采样6次.评价气溶胶吸湿能力采用生长因子来表示,即气溶胶吸湿前后粒径变化率^[29],此处用 G_r 表示,其中 D_p 表示吸湿后的粒径, D_o^* 表示吸湿前的粒径.

$$G_{\rm f} = D_{\rm p}/D_{\rm p}^*$$

研究表明,经 TDMA 测定的任意吸湿因子模态均应呈 Gaussian 分布^[30]. 由图 3 可知,本实验颗粒物吸湿增长分布曲线符合 Gaussian 分布,说明颗粒组成均匀. 结果显示,加湿实验之后,颗粒物的生长因子不断变大,大概从 1.05 逐渐增长到 1.11 就不再增长. 这也验证了在 UV-B 照射下, VOCs 生成的SOA,在实验湿度下,随着采样时间的增加,吸湿增长能力不断增加. 图 3 显示的分布曲线峰宽逐渐增

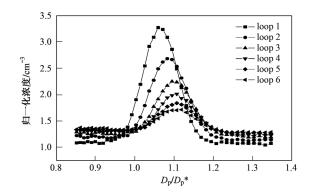


图 3 100 nm 颗粒物在 80% RH 时的吸湿增长分布曲线 Fig. 3 Hygroscopic variation of particles 100 nm in diameter

大,可能是 TDMA 测定颗粒物吸湿增长分布相对真实粒径分布函数产生的扭曲和偏离现象^[22].

3 结论

(1) 利用 SPME 采样与 GC/MS 分析,可以检测和分析植物释放 VOC 种类,该方法操作简便,并有较高的准确度和灵敏度.通过这种方法共检测出驱蚊草

- 释放的7种有机化合物,其中主要为单萜类与倍半萜类物质.这些物质是 SOA 在大气中重要的前提物.
- (2) 模拟紫外光实验,验证了 BVOC 经过光化 学反应可以形成 SOA. 通过 TDMA 分析, SOA 的粒 径范围是在 50~320 nm 之间.
- (3) BVOC 与大气中的氧化剂 O₃ 等发生光化 学反应,有可能是二次气溶胶形成的重要原因.
- (4)模拟紫外光实验,通过加湿 TDMA 实验,验证了 SOA 具有良好的吸湿性,生长因子从 1.05 增加到 1.11.

参考文献:

- [1] 王志辉,张树宇,陆思华,等. 北京地区植物 VOCs 排放速率的测定[J]. 环境科学, 2003, **24**(2): 7-12.
- [2] Guenther A, Hewitt C N, Erickson D, et al. A global model of natural volatile organic compound emissions [J]. Journal of Geophysical Research, 1995, 100 (D5): 8873-8892.
- [3] 汪午,王省良,李黎,等. 天然源二次有机气溶胶的研究进展 [J]. 地球化学, 2008, **37**(1):77-86.
- [4] 杨小琴. 植物挥发性有机物(VOCs)释放及其环境净化效应 概述[J]. 湖南城市学院学报(自然科学版), 2006, **15**(4): 57-60.
- [5] Atkinson R, Arey C. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: areview [J]. Atmospheric Environment, 2003, 37 (suppl 2): S197-S219.
- [6] Chen J W, Cao K F. Plant VOCs emission: a new strategy of thermotolerance [J]. Journal of Forestry Research, 2005, 16 (4): 323-326.
- [7] 王振亚,郝立庆,张为俊. 二次有机气溶胶形成的化学过程 [J]. 化学进展, 2005, **17**(4): 732-739.
- [8] 谢绍东,田晓雪. 挥发性和半挥发性有机物向二次有机气溶 胶转化的机制[J]. 化学进展, 2010, **22**(4): 727-733.
- [9] 谢绍东,于淼,姜明. 有机气溶胶的来源与形成研究现状 [J]. 环境科学学报, 2006, **26**(12):1933-1939.
- [10] 白志鹏,李伟芳. 二次有机气溶胶的特征和形成机制[J]. 过程工程学报,2008,**8**(1):202-208.
- [11] Hallquist M, Wenger J C, Baltensperger U, et al. The formation, properties and impact of secondary organic aerosol: current and emerging issues [J]. Atmospheric Chemistry and Physics, 2009, 9: 3555-3762.
- [12] Kesselmeier J, Staudt M. Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology[J]. Journal of Atmospheric Chemistry, 1999, 33:23-88.
- [13] 蔡志全,秦秀英. 植物释放挥发性有机物(VOCS)的研究进展[J]. 生态科学, 2002, **21**(1):86-90.
- [14] Noureddine Y, Jonathan W. Enantiomeric monoterpene emissions from natural and damaged Scots pine in a boreal coniferous forest measured using solid-phase microextraction and gas chromatography/mass spectrometry [J]. Journal of Chromatography A, 2007, 1141: 138-144.

- [15] Claeys M, Bim G, Gyorgy V, et al. Formation of secondary organic aerosols through photooxidation of isoprene [J]. Science, 2004, 303(5661):1173-1176.
- [16] 吕子峰,郝吉明,李俊华. 硫酸钙及硫酸铵气溶胶对二次有机气溶胶生成的影响[J]. 化学学报,2008,66(4):419-423.
- [17] 郝立庆, 王振亚, 黄明强,等. 羟基自由基浓度对二次有机气溶 胶形成的影响[J]. 中国环境科学, 2006, **26**(Suppl.);65-67.
- [18] Odum J R, Homffmann T, Bowman F, et al. Gas/Particle partitioning and secondary organic aerosol yields [J]. Environmental Science & Technology, 1996, 30 (8): 2580-2585.
- [19] Ruppert L, Becker K H. A product study of the OH radical-initiated oxidation of isoprene; formation of C₅-unsaturated diols [J]. Atmospheric Environment, 2000, 34(10); 1529-1542.
- [20] 李勇慧,耿惠敏,李向民. 驱蚊草挥发油成分的 GC-MS 分析 [J]. 陕西农业科学, 2008, **54**(1): 63-66.
- [21] Ye X N, Chen T Y, Hu D W, et al. A Multifunctional HTDMA system with a robust temperature control [J]. Advances in Atmospheric Sciences, 2009, 26(6):1235-1240.
- [22] Gysel M, McFiggans G B, Coe H. Inversion of tandem differential mobility analyser (TDMA) measurements [J]. Journal of Aerosol Science, 2009, 40(2): 134-151.
- [23] Tsigaridis K, Kanakidou M. Secondary organic aerosol importance in the future atmosphere [J]. Atmospheric Environment, 2007, 41(22); 4682-4692.
- [24] 叶兴南,陈建民. 大气二次细颗粒物形成机理的前沿研究 [J]. 化学进展, 2009, **21**(2/3): 288-296.
- [25] Jang M, Kamens R M. Characterization of secondary aerosol from the photooxidation of toluene in the presence of NO_x and 1propene[J]. Environmental Science & Technology, 2001, 35 (18): 3626-3639.
- [26] Tolocka M P, Heaton K J, Dreyfus M A, et al. Chemistry of particle inception and growth during α-pinene ozonolysis [J]. Environmental Science & Technology, 2006, 40 (6): 1843-1848.
- [27] Kamens R M, Jaoui M. Modeling aerosol formation from α-pinene + NO_x in the presence of natural sunlight using gas-phase kinetics and gas-particle partitioning theory [J]. Environmental Science & Technology, 2001, 35: 1394-1405.
- [28] Tolocka M P, Heaton K J, Dreyfus M A, et al. Chemistry of particle inception and growth during α-pinene ozonolysis [J]. Environmental Science & Technology, 2006, 40 (6): 1843-1848.
- [29] Liu B Y, Pui D Y, Whithy K T, et al. The aerosol mobility chromatograph: A new detector for sulfuric acid aerosols [J]. Atmospheric Environment, 1978, 12(1-3): 99-104.
- [30] Zhou J C, Swietlicki E, Hansson H C, et al. Submicrometer aerosol particle size distribution and hygroscopic growth measured in the Amazon rain forest during the wet season [J]. Journal of Geophysical Research, 2002, 107, 8055, doi: 8010. 1029/2000JD000203.

HUANJING KEXUE

Environmental Science (monthly)

Vol. 32 No. 12 Dec. 15, 2011

CONTENTS

Preface Study on Control and Management for Industrial Volatile Organic Compounds (VOCs) in China	
Study on Control and Management for Industrial Volatile Organic Compounds (VOCs) in China	WANC Haidin 7HANC Cuo-ning NELLei et al. (3462)
Countermeasures for Priority Control of Toxic VOC Pollution	· CHEN Ving II Line VANC Chang-ging et al. (3469)
Evaluation of Treatment Technology of Volatile Organic Compounds for Fixed Industrial Resources	
Emission Control Way of Volatile Organic Compounds in Industry	
Regulations and Policies for Control of Volatile Organic Compounds and the Emission Standards in Taiwan	
LUAN	I ZL: WANG V: ZHENG V 4 (2401)
LUAN COLOR DE LA RESEA DE LA R	Zni-qiang, WANG Xi-qin, ZHENG Ya-nan, et al. (3491)
Study on Foreign Regulations and Standards of Stationary Sources VOCs Emission Control	
VOCs Tax Policy on China's Economy Development	
Characteristics of Volatile Organic Compounds (VOCs) Emitted from Biofuel Combustion in China	
Spatial and Temporal Variations of Ambient Carbonyl Compounds in Beijing and Its Surrounding Areas	
	WANG Qin, SHAO Min, WEI Qiang, et al. (3522)
Analysis on Status Pollution and Variation of BTEX in Beijing ····	
Characteristics of Ambient VOCs and Their Role in O_3 Formation: A Typical Air Pollution Episode in Shanghai	Urban Area ·····
	··· CUI Hu-xiong, WU Ya-ming, GAO Song, et al. (3537)
Observation and Study on Atmospheric VOCs in Changsha City	·· LIU Quan, WANG Yue-si, WU Fang-kun, et al. (3543)
Characteristics of Volatile Organic Compounds During Haze Episode in Foshan City	
	··· MA Yong-liang TAN Ii-hua HE Ke-bin et al. (3549)
Investigation on Emission Properties of Biogenic VOCs of Landscape Plants in Shenzhen	
	···· HUANG Ai-kui, LI Nan, Alex Guenther, et al. (3555)
Pollution and Source of Atmospheric Volatile Organic Compounds in Urban-rural Juncture Belt Area in Beijing	
, ,	· ZHOU Yu-min, HAO Zheng-ping, WANG Hai-lin(3560)
Health Risk Assessment of Atmospheric Volatile Organic Compounds in Urban-rural Juncture Belt Area	
Source Emission Characteristics of Malodorous Volatile Organic Carbonyls from a Municipal Sewage Treatment P.	0.
	ZHOU Mi. WANG Bo-guang. ZHAO De-jun. et al. (3571)
Source Emission Characteristics and Impact Factors of Volatile Halogenated Organic Compounds from Wastewate	
Course Innovation Gilaterensis and Impact receipts of volume Transferance Organic Compounds from wasconde	HE lie WANG Ro-guang LIU Shu-le et al. (3577)
Quantification Assessment of the Relationship Between Chemical and Olfactory Concentrations for Malodorous Vo	
Quantification Assessment of the relationship between chemical and offactory concentrations for manufactory	III Shu le WANC Re-guang HE lie et al. (3582)
Study on Transformation Mechanism of SOA from Biogenic VOC Under UV-B Condition	II Ving-ving II Ving CHEN Jian-min (3588)
Kinetic Studies on the Gas-phase Reactions of NO ₃ Radicals with Three Cyclic Ethers	
Uptake of 3-methyl-3-buten-1-ol into Aqueous Mixed Solution of Sulfuric Acid and Hydrogen Peroxide	
An Overview on Analytical Method of Volatile Organic Compounds in Water	
Determ Ination of Low Concentration VOCs in Air by a Newly Designed Needle Trap Device	LI Xiang, CHEN Jian-min (3613)
Research on Determination of Total Volatile Organic Sulfur Compounds in the Atmosphere	TANGAL THENGAL IN THE WAY A (ACCE)
W	ANG Yan-jun, ZHENG Xiao-ling, HE Ying, et al. (3617)
Automatic Continuous Monitoring of Volatile Organic Compounds Using Ion Mobility Spectrometer Array	
ZHO	
Development of a Membrane Inlet-Single Photon Ionization/Chemical Ionization-Mass Spectrometer for Online Art	nalysis of VOCs in Water ·····
	···· HUA Lei, WU Qing-hao, HOU Ke-yong, et al. (3628)
Detection of TVOC and Odor in Industrial Park Using Electronic Nose	
Applicability of an Electronic Nose for Detection of Volatile Chlorinated Hydrocarbons in Soil	
Test and Analysis of Acrylic Acid Ester in Industry Pipelines · · · · · · · · · · · · · · · · · · ·	
Preparation of Honeycombed Monolithic Zeolite and Hydrophobic Modification with SiCl ₄	······ WANG Xi-qin, LI Kai, WEI Bing, et al. (3653)
Synthesis of Manganese Oxide Octahedral Molecular Sieve and Their Application in Catalytic Oxidation of Benze	ne ····· LI Dong-yan, LIU Hai-di, CHEN Yun-fa(3657)
Adsorption-Desorption Performance of Honeycomb-Shaped Activated Carbon	······ HAN Zhong-juan, LUO Fu-kun, LI Ze-qing(3662)
Process of Adsorption and Separating Recovery Solvents from Vapor Mixture Directly	
BTF Performance Treating a Chlorobenzene-Contaminated Gas Stream	
Purification of Complicated Industrial Organic Waste Gas by Complex Absorption	
Analysis of the Treatment Technology Pathway of VOCs Released from Oven	
Fabrication of Co ₃ O ₄ Nanorods and Its Catalytic Oxidation of Gaseous Toluene	
Preparation, Characterization of Si Doped TiO ₂ Nanotubes and Its Application in Photocatalytic Oxidation of VO	
Treparation, characterization of 51 Dopen 110 ₂ Nationalises and its Application in Finotocatalytic Oxidation of Vol	ZOII Xue-ium II Xin-vong OII Zhen-ping et al. (3604)
Research of the Natural Attenuation Capacity of Oil Pollutants Based on in-situ Experiment	
Experimental Research of Oil Vapor Pollution Control for Gas Station with Membrane Separation Technology	
Experimental Research of Oil Vapor Poliution Control for Gas Station with Membrane Separation Technology	II I CHEN II I THANC D 1 (2704)
	U Ling, CHEN Jia-qing, ZHANG Bao-sheng, et al. (3/04)
CI	HEN Jia-qing, ZHANG Nan, WANG Jin-hui, et al. (3/10)

《环境科学》第6届编辑委员会

主 编:欧阳自远

副主编:赵景柱 郝吉明 田 刚

编 委:(按姓氏笔画排序)

万国江 王华聪 王凯军 王绪绪 田 刚 田 静 史培军

朱永官 刘志培 汤鸿霄 陈吉宁 孟 伟 周宗灿 林金明

欧阳自远 赵景柱 姜 林 郝郑平 郝吉明 聂永丰 黄 霞

黄耀 鲍强潘纲潘涛魏复盛

环维种草

(HUANJING KEXUE)

(月刊 1976年8月创刊) 2011年12月15日 32卷 第12期(卷终)

ENVIRONMENTAL SCIENCE

(Monthly Founded in 1976)

Vol. 32 No. 12 Dec. 15, 2011

主	管	中国科学院	Superintended	by	Chinese Academy of Sciences	
主	办	中国科学院生态环境研究中心	Sponsored	by	Research Center for Eco-Environmental Sciences, Chinese	
协	办	(以参加先后为序)			Academy of Sciences	
		北京市环境保护科学研究院	Co-Sponsored	by	Beijing Municipal Research Institute of Environmental	
		清华大学环境学院			Protection	
主	编	欧阳自远			School of Environment, Tsinghua University	
编	辑	《环境科学》编辑委员会	Editor-in -Chief		OUYANG Zi-yuan	
210	14	北京市 2871 信箱(海淀区双清路	Edited	by	The Editorial Board of Environmental Science (HUANJING	
		18号,邮政编码:100085)			KEXUE)	
		电话:010-62941102,010-62849343			P. O. Box 2871, Beijing 100085, China	
		传真:010-62849343			Tel:010-62941102,010-62849343; Fax:010-62849343	
		E-mail: hjkx@ rcees. ac. cn			E-mail: hjkx@ rcees. ac. cn	
		http://www. hjkx. ac. cn			http://www. hjkx. ac. cn	
出	版	舒 望 出 版 社	Published	by	Science Press	
_		北京东黄城根北街 16 号			16 Donghuangchenggen North Street,	
		邮政编码:100717			Beijing 100717, China	
印刷装	订	北京北林印刷厂	Printed	by	Beijing Bei Lin Printing House	
发	行	斜华出版社	Distributed	by	Science Press	
		电话:010-64017032			Tel:010-64017032	
		E-mail:journal@mail.sciencep.com			E-mail:journal@ mail. sciencep. com	
订 购	处	全国各地邮电局	Domestic		All Local Post Offices in China	
国外总统	兌行	中国国际图书贸易总公司	Foreign		China International Book Trading Corporation (Guoji	
		(北京 399 信箱)			Shudian), P. O. Box 399, Beijing 100044, China	

中国标准刊号: ISSN 0250-3301 CN 11-1895/X

国内邮发代号: 2-821

国内定价:70.00元

国外发行代号: M 205

国内外公开发行