δ-MnO₂ 对Cr(Ⅲ)氧化动力学特征

董长勋¹,戴儒南¹,熊建军²

(1. 南京农业大学理学院,南京 210095; 2. 淮海工学院化学工程学院,连云港 822200)

摘要:采用分步离心法研究了 δ -MnO₂ 对Cr(II)的氧化动力学.结果表明, δ -MnO₂ 对Cr(II)的氧化反应可以用一级动力学方 程分段拟合.氧化反应是由 2 个速率不同的一级反应组成,Cr(II)溶液在高浓度(400 μ mol/L)条件下,也可以用扩散方程和 Elovich 方程分段拟合.温度升高显著增加快反应阶段速率常数.随着反应的进行,MnO₂ 表面吸附的Cr(VI)/Mn(II)逐渐减 小并远小于理论值(0.667),MnO₂ 表面吸附的Cr(III)、Cr(VI)和Mn(II)只占总量的 0.1%~3%.溶液中的Cr(VI)/Mn(II)逐 渐减小并接近理论值.所以Mn(II)向溶液中的扩散滞后于Cr(VI).Cr(III)的氧化反应的速率控制步骤,在低浓度条件下是 Cr(III)的扩散和吸附,在高浓度条件下是Mn(II)向溶液中的扩散.

关键词:铬;氧化锰;氧化;动力学

中图分类号:X53 文献标识码:A 文章编号:0250-3301(2010)05-1395-07

Kinetic Characteristics of Cr(III) Oxidation by δ -MnO₂

DONG Chang-xun¹, DAI Ru-nan¹, XIONG jian-jun²

(1. College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; 2. College of Chemical Engineering, Huaihai Engineering College, Lianyungang 822200, China)

Abstract: The kinetics of $Cr(\Pi)$ oxidation by synthesized vernadite(δ -MnO₂) was investigated through magnetic stirring and fractional centrifugation. The oxidation procedure of $Cr(\Pi)$ by δ -MnO₂ could be divided into two first-order reactions, a fast reaction followed by a slow one. In high $Cr(\Pi)$ concentration solution, the reaction was also well sub-simulated with diffusion equation and Elovich equation according to the reaction phases. The rate constants markedly increased with temperature rising. The ratio of $Cr(\Psi)/Mn(\Pi)$ gradually decreased and eventually reached the theoretical value (0.667) with the reaction. $Cr(\Psi)$, $Cr(\Pi)$ and $Mn(\Pi)$ adsorbed on δ -MnO₂ only accounted 0.1 to 3% of the total amounts. The $Cr(\Psi)/Mn(\Pi)$ ratio on the surface of MnO_2 was much smaller than the theoretical value due to the release of $Mn(\Pi)$ to the solution lagged behind $Cr(\Psi)$. When $Cr(\Pi)$ was in low concentration, $Cr(\Pi)$ oxidation was controlled by the diffusion and adsorption of $Cr(\Pi)$. While in high $Cr(\Pi)$ concentration, the key step was the diffusion of $Mn(\Pi)$ to solution.

Key words: chromium; manganese oxide; oxidation; kinetic

锰氧化物是土壤和沉积物中常见的活性氧化 物,对重金属污染元素Cr(Ⅲ)、As(Ⅲ)、Co(Ⅱ)等 有很强的吸附能力和氧化作用^[1],因而锰氧化物对 水土环境中重金属元素的迁移与形态转化起着重要 的调控作用.制革、喷镀和冶炼等工业生产过程排放 的废弃物中含有毒性很强的重金属元素铬,其主要 以Cr(Ⅲ)和Cr(Ⅵ)2种形态存在,且能在一定的氧 化还原电位范围内相互转化,Cr(Ⅵ)移动性和毒性 比Cr(Ⅲ)高出几十倍^[2],对动植物以及人类产生极 大的危害^[3].鉴于Cr(VI)的高毒性,目前国内外研 究者对土壤铬污染控制措施主要集中在Cr(Ⅵ)的 还原作用上,开发出一系列有效还原Cr(M)的方 法^[4~7],而对Cr(Ⅲ)在土壤中再氧化的途径及其反 应机制和动力学规律仍缺乏较全面的了解和深入的 研究. 已有研究表明,氧化锰矿物是唯一确定的可 氧化Cr(Ⅲ)的天然氧化剂^[8],也是将土壤环境中 $Cr(\Pi)$ 氧化为 $Cr(\Pi)$ 的最为重要的途径^[9].因此,

阐明氧化锰对Cr(III)氧化特性,为调控铬元素在环 境中的转化、降低其毒性提供理论依据.关于氧化 锰对Cr(III)氧化特性和影响因素的研究已有报道, 氧化锰矿物对Cr(III)的氧化能力受其结构、结晶 度、锰的价态和易还原锰含量的影响^[10].氧化锰对 Cr(III)的氧化是先快后慢,温度的升高能使其氧化 反应速率增加而并不改变其反应机制^[11,12]. 刘桂秋 等^[13]研究认为,Mn(II)扩散过程是Cr(III)氧化反 应的速率控制步骤.以往动力学研究大都采用流动 法或者磁力搅拌法,研究的结果只限于反应体系液 相中Cr(VI)和Mn(II)量的变化,但是锰氧化物对 它们的吸附作用较强,对Cr(VI)和Mn(II)量的测 定存在一定影响.迄今为止,对于氧化锰表面上 Cr(III)或Cr(VI)和Mn(II)量的变化的研究鲜见报

作者简介:董长勋(1966~),女,博士,副教授,主要研究方向为环 境化学, E-mail: dongchangxun@ yahoo.com.cn

收稿日期:2009-07-08;修订日期:2009-10-12

基金项目:国家自然科学基金项目(40671089)

道. 鉴于此,本研究以合成 δ-MnO₂ 作为对象,采用 磁力搅拌和逐一离心解吸方法对Cr(Ⅲ)氧化的上 述动力学问题进行探讨,以期为进一步阐明氧化锰 对Cr(Ⅲ)氧化反应的机制和速率控制步骤,揭示土 壤与沉积物中氧化锰矿物的环境化学行为,为土壤 铬污染的治理提供某些依据.

1 材料与方法

1.1 实验材料

 δ -MnO₂(以下简称 MnO₂)按 Mckennize^[14]的方法制得,磨细过 60 目筛混匀,用去离子水配成 20 mg/mL的悬浮液.

1.2 溶液配制

Cr(Ⅲ)储备液:用分析纯CrCl₃·3H₂O晶体和 去离子水配制,以0.01 mol/L KCl 溶液作为支持电 解质,用 0.1 mol/L HCl 和 NaOH 溶液调节 pH 至 4.5.

显色剂:称取 0.25 g 二苯碳酰二肼(1,5 diphenylcarbazide)溶于 100 mL 丙酮中,保存于棕色 瓶中,并置于冰箱中备用.

1.3 实验方法

1.3.1 浓度和温度对 MnO₂ 氧化Cr(Ⅲ)的影响

分别吸取 100 μmol/L CrCl₃ 溶液(pH 4.5)200 mL,置于经酸泡、去离子水洗净、烘干的 250 mL 塑料离心管中,在磁力恒温水浴中,控温(25 ±1)℃,调节合适的搅拌速度,预热 10 min 后待溶液温度恒定,迅速加入 1 mL MnO₂ 悬浮液(20 mg/mL),开始计时.按设计的时间用注射器抽取悬液 2 mL(每次取样尽量使悬液的固液比与反应器中的一致),用 0.45 μm 的一次性过滤器过滤,整个过滤时间不超过 10 s.测定滤液中Cr(VI)、总 Cr 和 Mn(II)浓度^[15].再以 200 μmol/L和 400 μmol/L CrCl₃ 溶液(pH 4.5)分别在15℃、35℃条件下重复上述实验,并分别做 MnO₂ 和Cr(III)的空白实验.

1.3.2 MnO₂ 氧化Cr(Ⅲ)动力学

分别吸取若干份 100 μmol/L CrCl₃ 溶液 (pH 4.5)200 mL 和1 mL MnO₂ 悬浮液,置于塑料离心管 中,磁力恒温水浴温度设置(25 ±1)℃,离心管在不 同时间逐一离心 5 min(4 000 r/min),倾出上清液, 称重,该质量减去空离心管和 MnO₂ 的质量即为残 留液的质量(w).再加入10 mL、0.01 mol/L KH₂PO₄ 溶液,解吸吸附在 MnO₂ 表面上的Cr(Π)、Cr(Π) 和Mn(Π)离子^[11,15].水浴控温(25 ±1)℃,磁力搅 拌 2 h,离心,倾出上清液,测定 2 次上清液中 Cr(VI)、总 Cr 和Mn(II)浓度 c_1 和 c_2 . 计算溶液和 吸附在 MnO₂ 表面上Cr(VI)、总 Cr 和Mn(II)物质 的量,第一次残留液浓度较小,密度可默认为 1 g/mL,计算方法:

溶液中离子物质的量 = 200 mL × c_1 , MnO₂ 表面 上离子物质的量 = 10 mL × c_2 – $w/(1 \text{ g/mL}) \times c_1$

并计算Cr(VI)与Mn(II)物质量的比. 再以 200 μmol/L、400 μmol/L CrCl₃ 溶液(pH 4.5)重复上述 实验.

1.4 Cr 和Mn(Ⅱ)浓度的测定

Cr(VI)浓度用二苯碳酰二肼吸光光度法测定^[16],测定波长为540 nm,选用1 cm 比色皿,仪器为紫外-可见分光光度计(北京瑞利分析仪器公司,UV-9100);总 Cr 和<math>Mn(II)浓度用原子吸收分光光 度计测定(北京谱析分析仪器公司, TAS-986). Cr(III)的浓度为总 Cr 减去Cr(VI)的浓度.

2 结果与讨论

2.1 浓度和温度对Cr(Ⅲ)氧化动力学的影响

25℃条件下,Cr(Ⅲ)溶液初始浓度分别为100、 200 和 400 µmol/L,以及 200 µmol/L,分别在15℃和 35℃条件下, MnO, 对Cr(Ⅲ)氧化动力学曲线示于 图 1 和图 2. Chen 等^[17] 研究表明, pH 对 δ-MnO,、 α -MnO,和 γ-MnOOH 氧化Cr(II)的氧化量均有较大 影响. 也有研究表明, δ -MnO₂ 在溶液 pH 4 ~ 5 范 围,pH对Cr(Ⅲ)氧化的影响很小,氧化过程溶液 pH 下降 0.3 左右^[18]. 本实验氧化过程溶液 pH 在 4.5~4.2 范围,所以反应过程溶液 pH 的变化对 Cr(Ⅲ)的最终氧化量影响很小. 另外,下面 MnO2表 面吸附离子的实验结果表明, MnO₂ 表面吸附的 Cr(Ⅲ)、Cr(Ⅵ)和Mn(Ⅱ)只占总量的 0.1%~3%, 所以,图1和图2的结果完全可以反映Cr(Ⅲ)氧化 动力学过程.从图 1、2 可以发现, MnO。氧化Cr(Ⅲ) 动力学曲线具有相同的变化趋势,即反应开始阶段, 生成Cr(Ⅵ)的量迅速增加,且Cr(Ⅲ)初始浓度越大 或者温度愈高, Cr(VI) 浓度增加幅度愈大. 30~60 min 后, Cr(N) 浓度呈极缓慢增加趋势. 由此可把 MnO, 对Cr(Ⅲ)氧化反应过程划分为2个阶段,即 开始的快速反应阶段和经过一段时间后的慢速反应 阶段. Cr(Ⅲ)溶液初始浓度较低(100 μmol/L)或者 温度较高(35℃)条件下,快速反应阶段时间较短,0 ~30 min 左右;初始浓度较高(400 µmol/L)或者温 度较低(15℃)条件下,快速反应阶段时间较长,0~ 80 min 左右. 刘桂秋等^[13]研究土壤中的几种铁锰

图 1 Cr(Ⅲ)浓度对 MnO₂ 氧化Cr(Ⅲ)速率的影响

Fig. 1 Influence of concentration on the oxidation $rate \mbox{ of } Cr(\mbox{ II }) \mbox{ by } MnO_2$

Fig. 2 Influence of temperature on the oxidation rate of Cr(Ⅲ) by MnO₂

结核对Cr(III)的氧化,发现其氧化过程也分为 2 个 阶段.说明 MnO₂对Cr(III)氧化过程中机制发生了 变化.本实验浓度范围,温度相同条件下,随Cr(III) 溶液初始浓度增加,生成Cr(VI)的量随之增加,而 Cr(III)初始浓度相同,温度增加生成Cr(VI)的量增 加不显著,只是增加了快速反应阶段的速率.温度升 高或者Cr(III)溶液初始浓度降低都会缩短快反应 阶段的时间.

2.2 Cr(Ⅲ)氧化动力学方程

对以上各个实验结果中溶液 Cr(VI)浓度与时间 t 的关系用一级动力学方程、扩散方程和 Elovich 方程等动力学方程分段拟合,发现用一级动力学方程拟合相关性达极显著水平(p < 0.01),如表 1. 实

验结果 $-\ln(1 - c_t/c_0) = t$ 呈良好的线性关系(如图 3、4),表明 MnO₂ 氧化Cr(III)反应符合一级动力学 规律,拟合的直线明显发生转折,第二反应阶段直线 斜率即速率常数明显减小,说明反应机制发生了变 化,可以推测 MnO₂ 对Cr(III)氧化反应由 2 个不同 机制的一级反应组成.

图 3 不同浓度时 $-\ln(1 - c_t/c_0)$ 与反应时间 t 的关系 Fig. 3 Relationship between $-\ln(1 - c_t/c_0)$ and t

at different concentrations

从表 1 中可以看到,在25℃条件下,用一级动力 学方程分段拟合得到速率常数k,Cr(Ⅲ)溶液初始 浓度为 200 µmol/L 的快阶段速率常数比 100 µmol/L的大,而慢阶段速率常数变化不显著.400 µmol/L的快阶段速率常数比 100 µmol/L、200 µmol/L的都小,但慢阶段速率常数相对较大. MnO₂ 对Cr(Ⅲ)氧化反应中快反应占主要阶段,所以,可 表1 MnO,对Cr(Ⅲ)氧化动力学方程拟合参数¹⁾

Table 1 Fitting parameters of kinetics equations of Cr($\rm III$) oxidation by MnO ₂												
反应条件				一级动力学方程		扩散方程			Elovich 方程			
温度	浓度	反应	1	$\ln\left(1 - c_t/c_0\right) = -kt$		$c_t = a + kt^{1/2}$			$c_t = a + k \ln t$			
∕°C	$/\mu mol \cdot L^{-1}$	PJI FX	c_0	k	R^2	a	k	R^2	a	k	R^2	
25	100	快	9/ 87	0.04942	0. 989 2 * *	52.27	0. 938 3 *	0. 555 8	40.44	14.96	0.8195	
	100	慢	94.07	0.001911	0. 981 4 * *	82.93	0.6752	0.8120	76.86	2.981	0.6395	
25	200	快	₽ 193 2	0.05240	0. 984 6 * *	74.25	43.02	0. 946 1 * *	142.4	90.55	0.8503	
	200	慢	175.2	0.001 813	0. 986 4 * *	177.7	0.8988	0.7028	157.0	6.268	0. 992 9 * *	
25	400	快	373 0	0.01862	0. 985 7 * *	29.37	42.47	0. 991 0 * *	78.54	91.52	0. 991 6 * *	
	400	慢	575.0	0.004 210	0. 993 2 * *	197.9	9.559	0. 987 9 * *	23.59	59.28	0. 984 9 * *	
15	200	快	快 180.2	0.02151	0. 999 0 * *	3.749	18.59	0. 986 9 * *	46.43	44.22	0. 967 8 * *	
		慢	109.2	0.002410	0. 970 9 * *	160. 9	1.298	0. 796 9	126.7	9.739	0.8669	
35	200	快	10/ 1	0.062924	0. 986 0 * *	46.97	2.594	0. 987 4 * *	3.114	60.06	0. 897 3 *	
		慢	177.1	0.002323	0.978.0**	176.5	1.736	0.8722	8.804	155.1	0.9026*	

1) * * 表示 p < 0.01, * 表示 p < 0.05, a 为常数, t 为反应时间; c_t 为 t 时间溶液浓度(μ mol/L), c_0 为反应平衡时溶液浓度(μ mol/L); R^2 为

相关系数 $(n = 7 \sim 11)$, k为表观速率常数,单位:一级方程为 min⁻¹,抛物线扩散方程为 min^{1/2}, Elovich 方程无量纲

以推测该反应低浓度时反应速率与溶液浓度有关, 高浓度时溶液Cr(III)浓度不是速率控制因素.曾有 研究也认为,当Cr(III)浓度不是速率控制因素.曾有 研究也认为,当Cr(III)初始浓度较高时,氧化反应 速率受还原出的Mn(II)在氧化锰表面吸附覆盖因 素的限制^[12];当Cr(III)的初始浓度低时,Cr(III)浓 度成为该氧化反应的限制因素.本实验在 200 μ mol/L条件下,温度从 15℃升高至 25℃和 35℃,快 阶段 k 分别为0.021 5、0.052 4和0.062 9 min⁻¹,慢 阶段 k 分别为0.001 81、0.002 32和0.002 41 min⁻¹. 温度升高可以显著增加快阶段速率常数,25℃ 和 35℃速率常数分别比15℃增加 2~3 倍,而对慢阶段 速率常数影响不显著.这与 Malati 等^[19]报道的结 果一致,他们研究表明在 10~60℃的温度范围内, MnO,对Cr(III)氧化速率随着温度升高显著增加.

Cr(III)溶液初始浓度为 400 μmol/L条件下,溶 液Cr(VI)浓度与时间 t 的关系也可以用扩散方程和 Elovich 方程分段拟合,相关性达显著水平,而低浓 度条件下(100 μmol/L和 200 μmol/L)拟合结果很 差.扩散方程常用来描述颗粒内的扩散^[20],方程中 的 a 值是离子在颗粒内的扩散速率常数,如果实验 数据用 Elovich 方程具有较好的拟合性,说明实验过 程为一非均相扩散过程,由此推测高浓度条件下, Cr(III)氧化反应与 MnO₂ 表面离子扩散机制有关. **2.3** 溶液和 MnO₂ 表面吸附的Cr(III)、Cr(VI)和 Mn(II)变化

若干份盛有相同浓度的 CrCl₃ 溶液和 20 mg MnO₂ 的塑料离心管,在不同时间逐一离心,倾出上 清液后加入 10 mL 0.01 mol/L KH₂PO₄ 溶液,解吸 液中Cr(Ⅵ)、Cr(Ⅲ)和Mn(Ⅱ)物质的量,即吸附在 MnO₂ 表面上的数量.图 5 和图 6 是Cr(Ⅲ)溶液浓 度为 400 μ mol/L, 25℃ 条件下,不同时刻吸附在 MnO₂ 表面上和液相中Cr(III)、Cr(VI)和Mn(II)量 的变化.

图 5 MnO₂ 表面吸附的Cr(Ⅲ)、Cr(VI)和Mn(Ⅱ)的变化 Fig. 5 Change of amount of substance of Cr(Ⅲ), Cr(VI) and Mn(Ⅱ) by sorption of MnO₂

从图 5 中(小图)可以看到,在开始阶段(5 min 之前),Cr(Ⅲ)数量最大,而后逐渐减少.说明溶液 中的Cr(Ⅲ)被迅速吸附,但同时Cr(Ⅲ)又被氧化, 所以Cr(Ⅲ)的数量又逐渐减小.而后呈波浪式变化 是Cr(Ⅲ)不断被吸附和被氧化 2 种作用的结果.表 明 MnO₂表面始终有一部分Cr(Ⅲ)没有被氧化.刘 桂秋等^[21]对土壤铁锰结核氧化Cr(Ⅲ)的研究,发现 部分吸附的Cr(Ⅲ)没有被氧化锰矿物氧化,认为未 被氧化锰氧化的Cr(Ⅲ),可能是因为吸附在氧化锰 表面的Cr(Ⅲ)有一部分为电性吸附,使Cr(Ⅲ)分布 在扩散层而不与氧化锰表面键合,或者吸附在 Stern

图 6 溶液中的Cr(Ⅲ)、Cr(Ⅵ)和Mn(Ⅱ)的变化 Fig. 6 Change of Cr(Ⅲ), Cr(Ⅵ) and Mn(Ⅱ) in the solution

层内与氧化锰表面键合,不能进行电子的传递,这部 分Cr(Ⅲ)没有被氧化锰矿物氧化.说明氧化锰表面 的吸附位点中只有一部分是氧化位点.

被 MnO₂ 表面吸附的Cr(VI)和Mn(II),在开始 阶段(5min 之前)数量较少,而后逐渐增加,增加至 某一数量后又逐渐减少,呈波峰形变化.在最初阶 段,Cr(III)被氧化为Cr(VI),同时 MnO₂转化为 Mn(II),MnO₂表面吸附的Cr(VI)和Mn(II)数量 逐渐增加,同时随着 MnO₂表面覆盖度增大,吸附能 逐渐减小,对Cr(VI)和Mn(II)吸附能力逐渐减弱, Cr(VI)和Mn(II)逐渐离开 MnO₂表面进入溶液.所 以 MnO₂表面上Cr(VI)和Mn(II)的数量增加至峰 值后逐渐减小,且Mn(II)的数量显著大于Cr(VI), 尤其开始阶段(20 min 左右).说明反应生成的 Mn(II)离开 MnO₂表面向溶液中扩散滞后于 Cr(VI).图6表明,随着氧化反应的进行,溶液中 Cr(VI)和Mn(II)浓度不断增加,而Cr(III)被吸附 和氧化逐渐减少.

溶液中Cr(VI)和Mn(II)不断增加,而 MnO₂ 表 面上的Cr(VI)和Mn(II)的数量先迅速增加而后逐 渐减少,这一结果可以通过分析 MnO₂ 表面和与溶 液中的Cr(VI)和Mn(II)物质量的比,即Cr(VI)/ Mn(II)的变化得以解释(表 2).从表 2 中液相 Cr(VI)/Mn(II)可以看到,Cr(III)溶液初始浓度在 100 ~ 400 μ mol/L 条件下, Cr(VI)/Mn(II)依 Cr(III)溶液浓度增加而减小.随着反应的进行,溶 液中的Cr(VI)/Mn(II)逐渐减小,从5~150 min 时 间内,分别从 1.73、1.51 和 1.17 下降至 1.10、 0.766 和 0.662.这种Cr(VI)/Mn(II)越大,说明溶

液中Mn(II)的数量	量越少,实际	上就是被	MnO ₂	表面
吸附的Mn(Ⅱ)数量	量相对较多.			

表 2 Cr(VI)/Mn(Ⅱ)(物质量)的变化
----------------	------------

Table 2	Change of a	amount of	substance	of	Cr(VI)	/Mn	(]]))
---------	-------------	-----------	-----------	----	-----	-----	-----	--------	---

	Cr(Ⅲ)初始浓度/μmol・L ⁻¹									
t/\min	100	200	400	100	200	400				
	液相C	r(VI)/Mr	n(]])	MnO ₂ 表	面 Cr(VI)∕Mn(∏)				
5	1.73	1.51	1.17	0.356	0.406	0.506				
10	1.09	1.01	0.878	0.250	0.297	0.363				
20	1.13	0.842	0.740	0.176	0.181	0.215				
30	1.12	0.796	0.735	0.143	0.146	0.175				
40	1.15	0.777	0.681	0.146	0.146	0.194				
60	1.12	0.786	0. 690	0.127	0.138	0.180				
90	1.13	0.768	0.661	0.131	0.138	0.153				
120	1.11	0.765	0.653	0.114	0.124	0.140				
150	1.10	0.766	0.662	0.115	0.121	0.133				

根据Cr(Ⅲ)与MnO,反应式:

$3 \text{MnO}_2 + 2 \text{Cr}(\text{OH})_2^+ + 2 \text{H}^+ \rightarrow$

 $3 \text{Mn}^{2+} + 2 \text{HCrO}_4 + 2 \text{H}_2 \text{O}$

计算出生成Cr(VI)与Mn(II)计量关系为2/3 ≈ 0.667 . 从表 2 可以发现,溶液中的Cr(VI)/ Mn(Ⅱ)从 1.17~1.73 逐渐减小并接近理论数值 0.667. Cr(Ⅲ)溶液为 200 和 100 μmol/L的实验达 到 0.667 需要 300 min 左右, 篇幅限制未列出. 经计 算, MnO₂ 表面吸附的Cr(Ⅲ)、Cr(Ⅵ)和Mn(Ⅱ)分 别占离子总量的 0.1% ~3%, 所以, 反应至最后溶 液中的Cr(Ⅵ)/Mn(Ⅱ)都可以接近理论数值.随着 反应的进行,生成的Cr(M)与Mn(II)逐渐进入溶 液,以及固体 MnO,数量逐渐减少,被 MnO,表面吸 附的 Mn(II) 数量相对 Cr(VI) 逐渐减少,说明 Mn(Ⅱ)离开 MnO₂表面向溶液中扩散滞后于 Cr(M). 刘桂秋等^[13]研究铁锰结核对Cr(M)的氧 化,结果显示Mn(Ⅱ)与Cr(Ⅲ)氧化量的比值(氧化 过程的平均值)在 0.80~0.29 之间, 与其理论值 (3.0~1.5)相比偏低,与本实验结果一致,同样是 因为Mn(II)向溶液中扩散滞后于Cr(VI).

表 2 中 MnO₂ 表面吸附的Cr(VI)/Mn(II)开始 阶段较大(0.50~0.36),10 min 后均在 0.36~0.11 之间,其远小于相应溶液中的Cr(VI)/Mn(II) (1.17~0.662)和理论值 0.667,该研究结果未见报 道.进一步说明 MnO₂ 表面对Mn(II)吸附能力较 强,Mn(II)向溶液中的扩散滞后于Cr(VI).刘桂秋 等^[22]研究几种土壤铁锰结核对Cr(III)的氧化动力 学发现,氧化锰矿物具有较高的负电荷表面,对金属 离子特别是Mn(II)较高的吸附能力,在反应中存在 环 境 科

Mn(II)的再吸附过程. 同时,在 pH 2.5~5.0 条件 下, Cr(VI)主要以 CrO₄²⁻、HCrO₄⁻ 形态存在^[23], MnO₂ 对其吸附能力相对较弱,表现为Cr(VI)的释 放先于Mn(II).所以Mn(II)向溶液中的扩散可能 成为Cr(III)的氧化反应的速率控制步骤. Dai 等^[24] 研究表明,预先用Mn(II)吸附处理过的 MnO₂氧化 Cr(III)的能力明显减弱,这一结果佐证了该 结论.

Apte 等^[25] 研究认为,氧化锰对Cr(Ⅲ)的氧化 是一个先吸附再氧化的复杂反应过程,可分为以下 几步: Cr(Ⅲ)的扩散和吸附、双方的电子传递(氧 化-还原反应)、Cr(VI)、Mn(II)的吸附和扩散,因为 双方的电子传递属于瞬时反应^[11]. Weaver 等^[26]用 原子显微镜(AFM)观察δ-Mn0,对Cr(Ⅲ)的氧化过 程,同样发现了矿物表面存在吸附-溶解-沉淀平衡 的过程.根据2.2结果中Cr(Ⅲ)的氧化由2个速率 不同的一级反应组成,那么反应速率是一种因素控 制,可能是Cr(III)的扩散和吸附或者是Mn(II)向 溶液中的扩散.根据2.1的结果,Cr(Ⅲ)溶液初始 浓度为 200 μ mol/L的速率常数 k 比 100 μ mol/L的 大,Cr(Ⅲ)溶液在低浓度条件下,Cr(Ⅲ)的扩散和 吸附是Cr(Ⅲ)的氧化反应的速率控制步骤,虽然 Mn(II)向溶液中的扩散滞后于Cr(VI),但 MnO_2 表 面具有相对充分的吸附位点,Cr(VI)、Mn(Ⅱ)在氧 化锰表面吸附覆盖不会成为氧化速率的限制因素; 而 400 μmol/L的快反应速率常数 k 比 100 μmol/L、 200 μmol/L的都小,说明在高浓度条件下,氧化速率 不受Cr(Ⅲ)溶液浓度的影响,Mn(Ⅱ)向溶液中的 扩散是Cr(Ⅲ)的氧化反应的速率控制步骤.

3 结论

(1) MnO₂ 氧化Cr(Ⅲ)反应过程划分为快、慢 2 个阶段,本实验条件下用一级动力学方程分段拟合 相关性达极显著水平.Cr(Ⅲ)溶液在高浓度(400 µmol/L)条件下,也可以用扩散方程和 Elovich 方程 分段拟合,相关性达极显著水平.

(2)温度升高可以显著增加快反应阶段速率常数,而对慢反应阶段速率常数影响不显著。

(3)Cr(Ⅲ)溶液在低浓度条件下,Cr(Ⅲ)的扩 散和吸附是Cr(Ⅲ)的氧化反应的速率控制步骤.在 高浓度条件下,Mn(Ⅱ)向溶液中的扩散是Cr(Ⅲ) 的氧化反应的速率控制步骤.

致谢:本研究在实验过程中得到南京农业大学 理学院兰叶青教授课题组的支持,在此表示感谢. 学

- [1] 刘铮. 土壤与植物中锰的研究进展[J]. 土壤学进展, 1991, 19(6):1-10.
- [2] Bartlett R J, James J M. Behavior of chromium in soils Ⅲ Oxidation [J]. J Environ Qual, 1979, 8(1): 31-35.
- [3] Dos Santos-Coelho F, Ardisson J D, Moura F C C, et al. Potential application of highly reactive Fe(0)/Fe₃O₄ composites for the reduction of Cr(VI) environmental contaminants [J]. Chemosphere, 2008, 71(1): 90-96.
- Melitas N, Moscoso O C, Farrell J, Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: Corrosion inhibition and passive oxide effects [J]. Environ Sci Technol, 2001, 35: 3948-3953.
- [5] Seaman J C, Bertsch P M, Schwallie L. In situ Cr(V) reduction with coarse-textured, oxide-coated soil and aquifer systems using Fe(II) solution[J]. Environ Sci Technol, 1999, 33: 939-944.
- [6] Lan Y, Deng B, Kim C, et al. Catalysis of elemental sulfur nanoparticles on chromium(VI)reduction by sulfide under anaerobic conditions [J]. Environ Sci Technol, 2008,39: 2087-2094.
- [7] Lan Y, Li C, Mao J. et al. Influence of clay minerals on the reduction of Cr⁶⁺ by citric acid [J]. Chemosphere, 2008, 71: 781-787.
- [8] Johnson C A. Xyla A G. The oxidation of Chromium (III) to Chromium (VI) on the surface of manganite (γ-MnOOH) [J]. Geochimica Cosmochimica Acta, 1991, 55: 2861-2866.
- [9] Zhang H. Light and Iron (II)-induced oxidation of chromium (III) in the presence of organic acids and manganese (II) in simulated atmospheric water [J]. Atmospheric Environment, 2000, 34: 1633-1640.
- [10] Kim J B, Dixon J B, Chusuei C C, et al. Oxidation of Chromium (Ⅲ) to (Ⅵ) by Manganese Oxides [J]. Soil Sci Soc Am J, 2002, 66: 306-315.
- [11] 谭文峰,刘凡,李学垣,等. 几种土壤铁锰结核对Cr(Ⅲ)的氧 化特性[J]. 环境科学学报, 2001, **21**(5): 592-596.
- [12] Risser J A, Bailey G W. Spectroscopic study of surface redox reactions with manganese oxides [J]. Soil Sci Soc Am J, 1992, 56: 82-86.
- [13] 刘桂秋,冯雄汉,谭文峰,等. 几种土壤铁锰结核对Cr(Ⅲ)的 氧化动力学特性[J]. 华中农业大学学报,2002,21(5): 450-454.
- Mckennize R M. The synthesis of birnessite, sryptomelane and some other oxides and hydroxides of manganese [J].
 Mineralogical Mckennize, 1971, 13: 493-502.
- [15] 陈英旭,朱祖祥,何增耀.环境中氧化锰对Cr(Ⅲ)氧化机理的研究[J].环境科学学报,1993,13(1):45-50.
- [16] 黄志英,何先莉,武铮.活性氧化铝分离——DPC 光度法测 定工业废水中 Cr(Ⅲ)-Cr(Ⅵ)[J].分析化学,1988,16 (12):1101-1104.
- [17] Chen Y X, Chen Y Y, Liu Q. Factors Affecting Cr(Ⅲ) Oxidation by manganese oxides[J]. Pedosphere, 1997, 7 (2): 185-192.
- [18] 董长勋,潘根兴,兰叶青.溶液 pH 和吸附离子对水相中氧
 化Cr(Ⅲ)的影响研究[J]. 生态环境, 2006, 15(1): 27-31.

参考文献:

董长勋等:δ-MnO₂对Cr(Ⅲ)氧化动力学特征

- [19] Malati M A, Sear A. Oxidations by manganese(III) -Oxidation of chromium(III) [J]. Polyhedron, 1989, 8: 1874-1875.
- [20] 王代长,蒋新,卞永荣,等.模拟酸雨条件下 Cd²⁺在土壤及 其矿物表面的解吸动力学特征 [J].环境科学,2004,25 (4):117-122.
- [21] 刘桂秋,张鹤飞,刘凡.不同土壤锰结核对Cr(Ⅲ)的氧化比较[J].陕西师范大学学报(自然科学版),2003,31(3): 110-114.
- [22] 刘桂秋,刘凡,谭文峰. 几种土壤铁锰结核对Cr(Ⅲ)的氧化 与矿物类型[J]. 土壤与环境,2002,11(3):241-244.
- [23] 何振立,周启星,谢正苗. 污染及有益元素的土壤化学平衡[M]. 北京:中国环境科学出版社, 1998. 161-208.

- [24] Dai R, Liu J, Yu C, et al. A comparative study of oxidation of Cr(III) in aqueous ions, complex ions and insoluble compounds by manganese-bearing mineral (birnessite) [J]. Chemosphere, 2009,76: 536-554.
- [25] Apte A D, Tare V, Bose P. Extent of oxidation of Cr(III) to Cr(VI) under various conditions pertaining to natural environment [J]. J Hazard Mater, 2006, 128: 164-174.
- [26] Weaver R M, Hochela M F, Ilton E S. Dynamic processes occurring at the Cr(III) aq(γ-MnOOH) interface: Simultaneous adsorption, microprecipitation, oxidation/reduction, and dissolution[J]. Geochimica et Cosmochimica Acta, 2002, 66: 4119-4132.