飞灰浆液脱硫特性的初步研究*

陆永琪 姚小红 郝吉明 徐 瑾 常 诚

(清华大学环境科学与工程系,北京 100084 E-mail: ch-ch@ 263. net)

摘要 对飞灰中铁等离子的浸出特性进行了正交试验,pH 对其浸出量大小有显著影响,在试验 pH 下限 Fe^{3+} 的浓度可达到 $30_{mg}/L$. Fe^{3+} 溶液和飞灰浸出液的脱硫试验表明, Fe^{3+} 的脱硫反应符合过渡态催化氧化机理,对 SO_2 吸收量的最佳增强作用出现在 pH=2—3. 在一台 4t/h 采暖锅炉上还进行了利用飞灰烟气脱硫的现场试验,结果证实在酸性条件下系统可达到中等程度的脱硫效果。

关键词 飞灰, 浸出液, Fe3+, 脱硫反应, 催化氧化, 现场试验, 大气化学,

Experimental Study on Desulfurization Performance of Fly Ash Slurry st

Lu Yongqi Yao Xiaohong Hao Jiming Xu Jin Chang Cheng (Dept. of Environ. Sci. and Eng., T singhua University, Beijing 100084 E-mail: ch-ch@ 263. net)

Abstract The orthogonal experiment was designed first to study the leaching of Fe ion in coal-fired fly ash solution. The pH value was found to be detrimental, and Fe³⁺ concentration in leachate could reach about 30mg/L in the low limit of pH. Then, the another lab experimental was conducted to investigate the SO₂ absorption with Fe³⁺ solution and fly ash acid leachate, proving the reaction mechanism of transition metal catalyzed oxidation of SO₂. From the experiment, the maximum enhancement of absorption arose within the pH ranges of 2.0—3.0 for the solution and leachate. In sequence, an on-site test of treat flue gas from a 4 t/h space heating boiler was put forward, in which the slurry of fly ash captured from flue gas was served as absorbent. The results showed a medium-order efficiency of SO₂ removal could be attained with this system.

Keywords fly ash, leachate, Fe³⁺, desulfurization, catalyzed oxidation, site test, atmospheric chemistry.

过度态金属对 SO_2 的液相催化氧化机理一直是大气化学研究的热点[1-3], 由于大气气溶胶中铁的存在, 雾水的酸化得到了加速. 近来对酸雾的观测结果进一步证明了铁离子、四价硫氧化物及 pH 间确实存在着相关性[4.5].

酸雨形成化学中 Fe³⁺ 浓度通常为 1mmol/L 的数量级,由于飞灰与大气气溶胶颗粒成分的相似性,利用飞灰浸取液中低浓度 Fe³⁺ 离子进行烟气脱硫是可行的.尤其是对中小锅炉,飞灰浸取液烟气脱硫不产生二次污染,同时具有中等脱硫效率;采用陶瓷防腐工艺,在酸性条件下又可保证不堵塞、结垢,延长寿命.其一次投资和运行费用和 Ca 基吸着剂脱硫相当.

1 飞灰的浸取特性试验

1.1 试验仪器及方法

300ml 锥形瓶, JB-2 型磁力恒温搅拌器, pHS-25 型酸度计, Fe³⁺、M n²⁺、Al³⁺ 和 Zn²⁺ 的测量采用原子吸收分光光度计, Ca²⁺、M g²⁺、K⁺ 和 Na⁺ 的测量采用 DX-100 型离子色谱仪.

试验中浸取液的 pH 值由缓冲液调节控制, 所用主要药品有 HCl、 HNO_3 、 $C_2H_5NO_2$ 、 $C_6H_{17}N_4$, T ris 试剂和 Na_2CO_3 . 试验用飞灰取自某采暖锅炉, 经 X 荧光分析, 得各主要氧化物含量如表 1 所示.

试验时, 飞灰和去离子水按一定比例混合加入锥形瓶, 在设定的 pH、温度、搅拌速度条件下进行浸泡, 达一定时间后, 静止15min后用

陆永琪: 男, 29岁, 博士, 讲师

收稿日期: 1998-03-16

^{*} 国家"九五"科技攻关课题(The National Key Science and Technology Project during Ninth Five-year Period): 96-910-01-01

表 1 试验用飞灰的主要成分的含量/%

成分	SO_2	Al ₂ O ₃	Fe ₂ O ₃	CaO	K ₂ O	MgO	Na ₂ O	M nO	ZnO	固定碳
含量	19.38	18. 32	8.91	1.69	0.68	0.41	0. 28	0.05	0.01	47.82

0. 2μm 的滤膜进行抽滤,并将滤液全部移入500ml 容量瓶中稀释至刻度,摇匀后进行不同离子浓度的测定.

1.2 正交试验设计

正交试验共设 5 个因素, 其中所设 pH 值 4 个水平为 2. 3, 5. 4, 8. 2 和 11. 5, 固水比 4 个水平为 1 5、1 10、1 20 和 1 30, 浸取时间 4、8、12 和 16h, 温度 40 和 60 搅拌速度 60 和 100r/min. 以 Fe^{3+} 和总金属离子的浸取率大小为指标. 试验中选用了 $L_{16}(4^3 \times 2^6)$ 型正交表.

1.3 试验结果及分析

以总金属离子溶出量为指标的正交试验结 果见图 1. 图 1 中的 3 条曲线分别反映了 pH 值、灰水添加比和浸取时间的影响. 在总溶出金 属中, 大部分是 Ca2+ 离子, 在各试验条件下均 占总溶出金属量的 80% 以上, 其次为 M g²⁺ 和 Al³⁺ 离子, 约占 15% 左右, 由图 1 可见, 金属溶 出量与pH 值呈明显的负相关性, 当pH= 11.5 时,可能由于金属离子形成了不溶的氢氧化物, 溶液中已无金属离子存在. 总溶出量还随固水 比的增加而增加. 而时间的影响在超过 8h 后. 呈现出相反的规律. 进一步的方差分析的 F 检 验表明, pH 值在 α= 0.05 水平上是显著的, 固 水比在 œ 0.25 水平上是显著的, 而浸取时间 的显著性更低. 试验还发现, 搅拌时间和温度的 变化对金属溶出量只略有影响,其显著性水平 最低. 图 2 给出了以 Fe3+ 的浸取特性为指标的 正交试验结果,由图2可见,Fe3+溶出量同样随

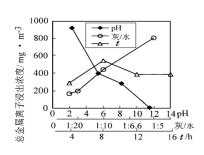


图 1 总金属离子的溶出特性

pH 值的减少而显著增加, 即提高酸度有利于 Fe^{3+} 的溶出, 在碱性条件下, 试样中已检测不到 Fe^{3+} 离子的存在, 进一步的显著性分析表明, pH 值在水平 $\alpha=0$. 05 上是显著的. 固水比和时间的影响表明, 在固水比达 1 10 时, Fe^{3+} 的浸出量已趋于平衡; 当浸取时间超过 8h 以后, 其影响也已不甚明显.

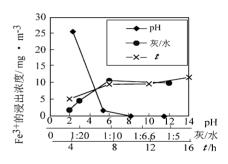


图 2 Fe3+ 的溶出特性

由于粉煤灰的多相性, 各元素在颗粒中的分布是不均匀的, 显微分析表明, 表面嵌埋的细粒和水晶体可能含有易溶元素的无机盐, 如 Ca^{2+} 、 Mg^{2+} 、 As^{3+} 等, 而 Fe^{3+} 、 Al^{3+} 等分布在整个灰粒中. 由于表层的溶解速度要比内层基体快, 因此, 在本试验条件下, Fe^{3+} 的溶出量一般在 30mg/L 以下, 远远小于 Ga^{2+} 、 Mg^{2+} 等离子的溶出浓度.

2 含 Fe³⁺ 溶液及飞灰浸取液的脱硫试验

2.1 试验装置

由供气系统、反应器、浓度分析和记录仪 4 部分组成(见图 3). 反应器内装 50ml 吸收液,由气流鼓泡通过,进气中 SO_2 /空气混合气的流量为 1L/min,出气 SO_2 浓度变化由 TE-46 型脉冲荧光 SO_2 分析仪连续在线监测,并由记录仪记录 30min. 试验在室温下进行. 试验用标气购自中国计量科学院, SO_2 浓度为 $973ml/m^3$. 实验中试样 pH 值由配制甘氨酸/稀酸缓冲液调节. 试样用 Fe^{3+} 由优级纯 $FeCl_3$ 药剂与去离子水配制而成,飞灰浸取液由飞灰在设定条件下

浸泡过滤而制得.

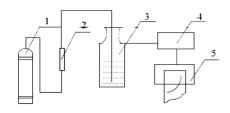


图 3 脱硫反应试验流程 1.SO₂ 混合气钢瓶 2. 流量计 3. 反应器 4.TE-40 型 SO₂ 分析仪 5. 数据记录

2.2 试验结果及分析

 $(1) \, \mathrm{Fe}^{3+} \,$ 浓度的影响 配制与飞灰浸取液 $\mathrm{Fe}^{3+} \,$ 浓度大小相当的 $\mathrm{Fe}^{3+} \,$ 标准溶液,试验中溶液由缓冲液调节 pH 值至 2.3,并与相同 pH 值的不含 Fe^{3+} 的空白溶液进行比较,试验结果见图 $4. \, \mathrm{B4}$ 中的曲线 $1. \, \mathrm{DPH}$ 为空白试验的吸收曲线,累计 $30 \, \mathrm{min}$ 的 $\mathrm{SO}_2 \, \mathrm{W}$ 收量为 $0.155 \, \mathrm{mmol}$,而浓度为 10.25、 $50 \, \mathrm{mad} \, \mathrm{D0mg}/\mathrm{L}$ 的 Fe^{3+} 溶液的吸收量分 10.25、10.2500 10.250 10.2

图 4 中的曲线 3 为飞灰浸取液的脱硫试验结果. 所用飞灰特性同表 1, 浸取时飞灰与水的混合比为 1 20, pH 值 2. 3, 浸取 16h 后 Fe^{3+} 浓度为 3. 7mg/L. 由图 4 可知, 其 30m in 的 SO_2 吸收量为 0. 578mm ol, 介于浓度为 10mg/L 和 25mg/L 的 Fe^{3+} 溶液的吸收量之间, 表明 Fe^{3+} 离子在反应中遵循相同的作用机制.

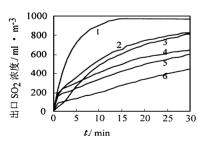


图 4 Fe³⁺ 浓度对脱硫特性的影响 1. 空白水样 2. Fe³⁺ = 10mg/L 3. 飞灰浸取液 4. Fe³⁺ = 25mg/L 5. Fe³⁺ = 50mg/L 6. Fe³⁺ = 100mg/L (2) 脱硫反应机理的分析 Fe³⁺ 对 SO₂的

吸收作用可能的 2 种反应机理为氧化还原机理和催化氧化,包括自由基机理和半导体催化机理.分析表明,铁的液相反应符合半导体催化(或过渡态催化)机理, SO_2 氧化速率大小受老化产生的活性产物浓度控制,并随老化产物的耗净而失去脱硫作用 $^{[6,7]}$.飞灰中的碱性溶出物也有可能发生酸碱中和而除去部分 SO_2 ,这种作用可能对褐煤飞灰尤为明显.但在本试验中,由于 $_{pH}$ 值由缓冲液调节,飞灰浸取液中含 Ca^{2+} 、 Mg^{2+} 等的碱性物质在 $_{pH}$ 调整过程中就已消耗掉,不能再继续存在并起吸收作用,也就排除了碱性溶出物的可能影响.可见,试验结果综合反映了浸取液中 Fe^{3+} 的催化氧化作用.

(3) pH 值的影响 pH 的影响大小以 30m in 内 Fe³⁺ 溶液或飞灰浸取液的净 SO₂ 吸收量来表示, 试验结果见图 5. 此处的净吸收量特指已扣除相同条件下空白水溶液的吸收. 试验中 Fe³⁺ 溶液浓度为 10mg/L, 飞灰浸取液的制备同上.

由图 5 可见, 在 pH=2—3.7 范围内, SO^2 吸收量并不呈单调变化规律. 对于 Fe^{3+} 溶液, 吸收量的峰值出现在 pH=2.5—3.0, 而对于飞灰浸取液, 峰值出现在 pH=2.0—3.5. pH 过大或过小, 都不利于净吸收能力的提高.

按照 Fe^{3+} 离子的水合平衡关系, 随初始 pH 值的减少, 生成氢氧化物的量减少, 因此增加了可溶性 Fe^{3+} 离子浓度. 由于起液相催化作用的主要是 Fe^{3+} , 因此, 吸硫速率随 pH 值的减小而增大. 另一方面, 就 SO_2 气体吸收而言, 其总溶解度大小也取决于 H_2SO_3 HSO \overline{s} 的离解快慢, 显然, 在低 pH 值条件下由于离解作用导致的溶解增强受到抑制, 因而 pH 过低也将造成 SO_2 吸收量的减少.

3 现场试验

3.1 脱硫试验系统

现场为一容量为 4t/h 的采暖锅炉, 脱硫试验装置的流程见图 6. 试验系统包括文丘里除尘器, 填料吸收塔, 沉淀池, 风机和水循环系统5 部分. 试验时, 由文丘里捕集的飞灰排入沉淀

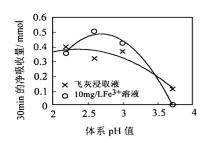


图 5 pH 值对脱硫特性的影响

池,飞灰在池中可保证数 h 的停留和混合时间,池中的浸取液被不断送到吸收塔,经喷嘴喷淋与气流逆流运动,进行 SO_2 的吸收. 试验过程中无其它碱性物质加入.

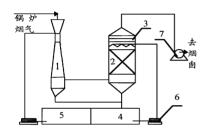


图 6 现场脱硫试验系统流程

- 1. 文丘里除尘器 2. 填料塔 3. 除雾器
- 4. 初沉池 5. 清液池 6. 风机 7. 水泵

现场试验中锅炉的运行负荷为 85%, 进入脱硫系统的烟气量为 $6880N\,m^3/h$, 进气 SO_2 浓度在 573— $883ml/m^3$ 间波动. 文丘里除尘器的液气比控制为 $0.5L/Nm^3$, 吸收塔中控制为 $1L/Nm^3$. 试验期间系统 pH 值稳定在 2.1—2.5 内. 烟气 SO_2 浓度采用碘量法测量, 并取 3 次平行样的平均值, 采样每隔 1h 进行 1 次.

3.2 试验结果及分析

图 7 给出了测试结果,由于多种因素的作用,系统脱硫率在一定范围内发生波动.由图 7 可见,系统的最高脱硫效率达 87.7%,最低脱硫效率为 45.4%,试验期间的平均脱硫率为 58.4%,飞灰浆液脱硫可达到中等程度的脱硫效率.

试验过程中还对沉淀池中的水样进行了分析,各主 要离子的浓度为: Fe^{3+} : 175mg/L; Fe^{2+} : 67.5mg/L: SO_4^{2-} : 2677mg/L; Al^{3+} : 32.5mg/L, 在试样中未检测出 SO_3^{2-} 的浓度.

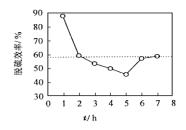


图 7 飞灰脱硫效率的现场试验结果

试验中对粉尘负荷的监测表明, 进气中飞灰 浓度为 $2.02g/Nm^3$, 系统除尘效率达93.6%. 根据表 1 中的飞灰成分分析结果, 即使碱性物质全部溶出, 用于脱硫的量仅为6.8mol/h(以 Ca 计), 假设其全部转化最多也只能达到 9.1%的脱硫效率. 这也表明, 飞灰脱硫的主要机理不是酸碱中和或物理溶解, 起主要作用的是 Fe^{3+} 离子的催化氧化反应.

4 结论

- (1) 飞灰中金属离子的浸出量大小主要取决于 pH 值和灰水比, 低 pH 值、高灰水比条件下浸出液 Fe^{3+} 离子浓度可超过 30mg/L.
- (2) 低浓度 Fe^{3+} 溶液的脱硫反应主要按过渡态催化氧化机理进行, 飞灰浸取液脱硫也符合这一反应机理.
- (3) 在 pH 值 2.5—3.0 范围内, 溶液中 Fe³⁺ 对吸硫有最大的增强作用; 飞灰浸取液相 应的最佳 pH 值范围为 2.0—2.5.
- (4) 现场试验表明, 用飞灰在酸性条件下对低硫煤烟气脱硫可达中等程度的脱硫效率.

参考文献

- Brandt C et al. Kinetics and Mechanism of the Iron() Catalyzed Autoxidation of Sulfur() Oxides in Aqueous Solution. Inorg. Chem., 1994, 33(4):687_701
- 2 Brandt C et al. Transition Metal-Catalyzed Oxidation of Sulfur() Oxides Atmospheric Revevant Processes and Mechanisms. Chem. Rev., 1995, 95(1):119_190
- Martin B L et al. Catalyzed Oxidation of Sulfur Dioxide in Solution: the Iron-Managnese Synergism. Atmos. Environ., 1991, 25(10): 2395_ 2399
- 4 Behra P et al. Evidence for Redox Cycling of Iron in Atmospheric Water Drops. Nature, 1990, 344(29): 419_420
- 5 Zhuang G et al. Link Between Iron and Sulphur Cycles Suggested by Detection of Fe () in Remote Marine Aerosols. Nature, 1992, 355(6): 537_539
- 6 Erel Y et al. Redox Chemistry of Iron in Fog and Stratus Clouds. J. Geophy. Res., 1993, 98(D10): 18423_18434
- 7 Faust B C et al. Photocatalytic Oxidation of Sulfur Dioxide in Aqueous Suspension of αFe₂O₃. J. Phys. Chem., 1989, 93(17): 6471_6387