沉淀分离富集-电感耦合等离子原子发射光谱 测定土壤中可溶态稀土元素^{*}

曹心德 赵贵文 查立新 方能虎 汪建飞

(中国科学技术大学化学系,合肥 230026)

摘要 研究电感耦合等离子体原子发射光谱(ICP-AES)测定土壤中微量可溶态稀土元素(SREEs)的方法.在适宜的 $_{\rm pH}=10-11$ 条件下,以 $_{\rm M~gCl2}$ 为载体沉淀分离除去浸提液中的大部分基体杂质如 $_{\rm Na^+}$, $_{\rm Ac^-}$, $_{\rm Ca}$ ²⁺, $_{\rm M~g}$ ²⁺等,有效地消除了这些杂质的干扰,提高了测定方法的准确度;同时,待测可溶态稀土元素被沉淀富集,样品中总稀土及各单一稀土加标回收率为88%—110%,样品测定结果满意,方法简便快速.

关键词 可溶态稀土元素(SREEs),土壤,沉淀分离富集,电感耦合等离子体原子发射光谱(ICP-AES).

A Method for Determination of Soluble Rare Earth Elements in Soils by Inductively Coupled Plasma-atomic Emission Spectrometry

Cao Xinde Zhao Guiwen Zha Lixin Fang Nenghu Wang Jianfei (Dept. of Chem., Univ. of Science and Technology of China, Hefei 230026)

Abstract A method was described for the determination of soluble rare earth elements (SREEs) in soils by inductively coupled plasma-atomic emission spectrometry (ICP-AES). Separation and preconcentration of SREEs from extraction solutions of soils were achieved with M gCl₂ as a carrier at pH= 10—11. The influences of pH and M gCl₂ on SREEs recovery were investigated. M atrix components of Ca²⁺, Na⁺, Mg²⁺ and Ac⁻ were removed to minimize interferences and improve sensitivities. The recoveries of SREEs are 88%—110%. Results of sample determination are satisfactory.

Keywords soluble rare earth elements(SREEs), soil, coprecipitation and separation, inductively coupled plasma-atomic emission spectrometry(ICP-AES).

随着稀土工业的发展和应用领域的开拓, 特别是农用稀土微肥的大面积推广,进入土壤 环境中的稀土正在迅速增加^[1,2].外源性稀土进 入土壤后主要以可溶态存在^[3,4].目前,测定土 壤中可溶态稀土元素主要是分光光度法^[5-7],这 类方法受基体 Ca 元素严重干扰,准确度较差, 而且它们只能测得可溶态稀土总量,但实际上 稀土对生态环境的影响还因单一稀土元素的不 同而不同^[4].

电感耦合等离子体原子发射光谱法具有灵 敏度高、检出限低、稳定性好、可同时测定多种 元素并且方法简便快速等优点,现已广泛用于 生态环境体系(包括土壤、水、大气等)中微量元 素的测定^[8-1]. 土壤可溶态稀土采用1mol/L NaAc-HAc(pH4.8)浸提^[7],含量很低,而且浸 提液中还含有大量基体杂质如Na⁺、Ac⁻、Ca²⁺、 Mg²⁺等,这些杂质的存在会严重干扰稀土的测 定,为提高方法的准确度,本研究在测定之前对 样品进行沉淀分离富集,在一定的pH 值时,以

 ^{*} 国家自然科学基金资助项目(Project Supported by National Natural Science Foundation of China)
 曹心德:男,30岁,博士生
 收稿日期:1997-07-28

MgCl2为载体,稀土被沉淀富集,Mg²⁺ 却发生 少量沉淀而分离.测定结果准确可靠,方法简单 快速.

1 试验部分

1.1 仪器和主要试剂

(1) 仪器 ICP/6500型单通道扫描式等离
子体光谱仪(PE 公司). 实验条件及参数见表1.
(2) 试剂 NaOH, NaAc, HAc, HCl,
MgCl₂, 三乙醇胺(所有试剂均为分析纯).
稀土标准溶液: 用光谱纯稀土氧化物制备

浓度为1.0mg/ml的各单一元素的储备液,使

夕 卅	会 粘	元	分析波长	检出限1)	元	分析波长	检出限1)	
* 1	参 奴	素	/ nm	$/ \mu g^{\bullet} g^{-1}$	素	/ nm	$/ \mu g^{\bullet} g^{-1}$	
入射功率	0. 65kW	La	398.85	0.007	Dy	353.17	0.003	
冷却气	15L/ min	Ce	418.66	0.03	Ho	345.60	0.003	
辅助气	0. 3L/ min	Pr	417.84	0.03	Er	369.27	0.01	
载气	1. 0L/ min	Nd	406.11	0.02	Τm	313.13	0.004	
观测高度	圈上15mm	Sm	442.43	0.02	Yb	328.94	0.0009	
进样速度	1. 4ml/ min	Eu	381.97	0.001	Lu	261.54	0.001	
积分时间	1 s	Gd	342.25	0.01	Y	371.03	0.0007	
寻峰步数	标准24步,样品10步	T b	350.92	0.01	Sc	361.38	0.0007	

1) lg 样品定容到10ml

用前按待测元素含量稀释混合配制,用盐酸控制酸度为1mol/L.

土壤样品: 黄褐土, 黄红壤.

1.2 实验步骤

(1) SREEs 浸提液制备 称取一定量的干 土壤样品(20目),按1·5的比例加 pH4.8NaAc-HAc 缓冲溶液,在振荡器上振荡30min(1860r/ min),用双层定量滤纸过滤,所得溶液即为土 壤可溶态稀土浸提液.

(2)样品分析 准确移取相当于 $10g \pm$ 壤 的浸提液 $50ml, m10mg MgCl2, 2.5ml20\% \equiv Z$ 醇胺, 用4% NaOH 调pH= 11, 即可看到乳白色 乳状沉淀, 加热煮沸一定的时间, 使沉淀聚沉, 冷却后用砂芯漏斗(孔径 0.45μ m) 过滤, 用2% NaOH 洗涤2次, 水洗3次, 使被吸附在沉淀上 Na⁺, Mg²⁺, Ca²⁺洗去, 沉淀物用煮沸的2mol/L HCl 溶解, 将所得溶液加热浓缩近干, 冷却后用 1mol/L HCl 稀释定容至10ml, 待测 ICP-AES.

2 结果与讨论

2.1 基本成分的分离

pH4.8 NaAc-HAc 土壤浸提液中含有大量的 Ca^{2+} , Mg^{2+} , Na^{+} 和 Ac^{-} 等基体成分. 当用 ICP -AES 测定其中的 REEs 时,高盐基体的存

在一方面会引起信号漂移, 甚至会使进样毛细 管圆孔堵塞; 另一方面 Ca 的强发射线会引起 杂散光效应. ICP-A ES 中的干扰及其校正已进 行了不少的研究^[12,13]. 为消除这些干扰因素, 本实验采用了沉淀分离, 在 pH = 11时, 以 M gCl₂为载体, 稀土元素由于其沉淀物的溶解 度较小优先以氢氧化物共沉淀而富集, M g²⁺ 只 发生很小部分沉淀^[14], 通过过滤, Na⁺, Ac⁻, Ca²⁺和大部分 M g²⁺ 随滤液而分离, 基体中微 量存在的 F e³⁺, Al³⁺ 在碱性条件下被三乙醇胺 配合, 同时, 用蒸馏水洗涤可除去吸附在沉淀上 的 Na⁺, Ca²⁺ 和 M g²⁺.

182	口观视中	Ca, Mg, Na	a的刀齿凶	TX RE	Е плынх ф

元素	$Ca^{1)}$	$M \: g^{\ l)}$	$N a^{1)}$	REE ²⁾
分离前/ μg• ml [⊣]	400	80	1500	4
分离后/ µg• ml⁻ ¹	18.2	17.7	8.5	4.08
分离因子(回收率)%	95.45	77.87	99.43	102

1) ICP-AES 测定 2) 分光光度测定^[7]

表3 SREE 浸提液中 Ca, Na, Mg 的分离因子¹⁾

项	目	黄褐土			黄红壤		
		Ca	Na	Mg	Ca	Na	Mg
 分离前	i/µg•ml⁻	¹ 370	1439	74.5	330	1399	47.6
分离后	/μg•ml-	126. 1	3.9	29.5	14.0	3.2	29.2
分离团	国子%	92.95	99.71	60.40	95.76	99.77	38.24

1) ICP-AES 测定

表2和表3分别给出了合成模拟液和实际样 品中杂质离子的分离因子.模拟液的组成与实 际样品相匹配,即移取一定量的混合稀土标准 溶液,根据样品中ICP-AES 测得的值加相应量 的 Ca²⁺, Mg²⁺,用 pH4.8 NaAc-HAc 溶液稀释 到50ml.从表2和表3可以看出,稀土的回收率 大于95%,效果较好, Na⁺, Ca²⁺ 基本全部被除 去, Mg²⁺ 的回收相对较差,但通过样品回收率 实验证明,一定量的 Mg²⁺ 对测定结果影响不 大,与文献[15]相吻合.

2.2 不同的 pH 值对沉淀回收的影响

根据2.1合成模拟液,调节不同的pH值, 按样品的分析方法测定REE的沉淀回收,结果 如图1.图1表明,随着pH值的增大,稀土元素 沉淀回收率越来越高.当pH<11时,稀土元素 由于未完全定量沉淀下来,回收率较小;当pH

图1 不同的 pH 值对合成液中稀土的回收率的影响

= 11时,所有的稀土元素基本全部回收(88%— 103%);当继续增大时,可能有大量 Ca(OH)₂, Mg(OH)₂沉淀下来,干扰了稀土元素的发射, 使回收率减小,如pH= 12,13时,Ce,Nd 的回 收率相对较低,这与较多 Ca 的干扰有关^[16],总 之,盐分增大测得结果一般偏低.实验选用 pH = 11.

2.3 载体镁对沉淀回收的影响

由图2可知, Mg 不仅是稀土的沉淀载体而 且又促进了稀土的回收. 当 MgCl²为10mg 时, 回收最好, 但是当 Mg 的量增大时, 回收反而下 降, 其可能的原因是 Mg 量增大, 其沉淀也增 大, 大量的 Mg 必然干扰稀土的雾化及发射, 使 回收率减小, 另外, 大量的絮状 Mg(OH)²沉淀 难以过滤和洗涤, 本实验选用10mg.

图2 不同量的 MgCl₂对合成液中稀土的回收率的影响 1. La 2. Ce 3. Pr 4. Nd 5. Sm 6. Eu 7. Gd 8. Tm 9. Y

表4	样品添加标样回收实验结	果
~		-

		黄褐土					黄红壤		
元	样品中	加入量	测定值	回收率	元	样品中	加入量	测定值	回收率
素	含量/ _{µg}	$/\mu_{\rm g}$	/ $\mu_{ m g}$	1 %	素	含量/ _{µg}	/ $\mu_{ m g}$	/ $\mu { m g}$	1%
La	11.88	2.16	14.2	99. 07	La	47.45	10.78	57.78	95.88
Ce	13.64	2.37	15.74	88. 61	Ce	53.43	11.86	63.78	87.26
Pr	2.32	2.74	4.90	94.16	Pr	6.53	13.70	18.68	88.68
Nd	6.52	2.50	9.17	106	Nd	34.40	12.51	46.33	97.76
\mathbf{Sm}	1.64	1.55	3.05	91	\mathbf{Sm}	5.50	7.73	13.60	104.8
Eu	0.43	1.36	1.68	91.91	Eu	2.55	6.80	8.68	90.15
Gd	1.69	1.56	3.10	90.38	Gd	6.00	7.80	13.03	90.13
Τm	0.068	1.20	1.19	93.50	Τm	1.00	6.01	6.70	94.84
Y	5.58	1.66	7.39	109	Y	32.35	8.30	40.75	101.2
REE	46.73	17.1	63.52	98.19	RE E	201.1	85.50	281.39	93.91

取相当于10g 土壤的浸提液50ml,加一定 量的各单一稀土,按样品的分析方法测定稀土 的回收率,结果如表4.

由表4可以看出,样品加标回收效果较好(87%—109%),表明所研究的方法准确可靠.

2.5 测定酸度的影响

研究了不同浓度的 HCI, HNO₃对1µg/gLa 谱线强度的影响(如图3).在以蠕动泵保持提升 容量相同的条件下,当酸度由0增至0.8mol/L 时,谱线强度明显降低,随后酸度继续增加,谱 线强度缓慢减小.在实际分析中,使标准溶液与 样品溶液的酸度一致.实验选用1mol/L HCI 作 为测定介质.

图3 不同浓度的 HCl, HNO₃对 $1\mu_g/gLa$ 的发射强度的影响

2.6 样品测定结果

由于基体中的 Na^+ , Ca^{2+} , Mg^{2+} 和 Ac^- 被 分离掉, 所以直接进样光谱仪测定样品中的 SREE. 根据图4和表5, 土壤中 SREEs 含量差 异很大,酸性土壤(黄红壤)中 SREEs 较多, 中

性(黄褐土) 土壤中 SREEs 较低, 且三波长分光 光度法与 ICP-AES 测定值相接近, (相对偏差 < 8%), 同时还可以看到土壤中 SREEs 主要是 以轻稀土为主组成, 且也符合克拉克值分布.

表5 土壤中可溶态稀土(SREEs)测定结果/μg•g⁻¹

黄褐土		黄红壤	
元素	测值1)	元素	测值
La	1.19	La	4.75
Ce	1.36	Ce	5.34
Pr	0.23	Pr	0.65
Nd	0.65	Nd	3.41
Sm	0.16	Sm	0.55
Eu	0.043	Eu	0.26
Gd	0.17	Gd	0.60
Tb	0.01	Тb	0.10
Dy	0.23	Dy	0.65
Но	0.008	Но	0.078
Er	0.007	Er	0.16
Tm	0.0068	Τm	0.10
Yb	0.023	Yb	0.15
Lu	0.007	Lu	0.02
Y	0.56	Y	3.24
Se	0.013	Se	0.048
REE	4.67	REE	20.11
SRE E ¹⁾	4.67		20.11
SRE E ²⁾	5.02		21.07
相对偏差/%	7.7		4.7

1) ICP-AES 测定 2) 三波长分光光度法测定^[7]

3 结论

化学沉淀分离富集-电感耦合等离子体原 子发射光谱测定土壤可溶态稀土元素,方法准 确可靠,总量与三波长分光光度法测得的值比 较相对偏差小于8%.不同类型的土壤中可溶态 稀土元素的含量各不相同,一般地,酸性土壤中 可溶态稀土含量较高,中性或碱性土壤中含量 较低,且主要是以轻稀土为主组成,各单一可溶 态稀土符合克拉克值分布.

参考文献

1 Essington M C et al. A plication of Trace Rare Earth Elements in Agriculture-Soil Sci-Soc-Am-J., 1990, **54**: 385

2 章世沪.稀土的生物效应.稀土, 1987, 8(4): 42

- 3 陈照 喜等. 外源 可溶性稀土在土壤中的形态 及有效性研究. 中国稀土学报, 1995, 13(1):74
- 4 王晓蓉.稀土元素的环境化学研究现状及发展趋势.环境 化学,1991,10(6):73
- 5 冉 勇, 刘 铮. 三氯偶氮 胂分光光度 法测定土壤中的可溶 态稀土元素. 分析化学, 1993, 21(3): 370
- 6 章 力干, 胡正义, 陆翠珍等. 土壤中可溶态稀土总量的双 波长分光光度法测定. 土壤通报, 1994, 25(3): 138
- 7 朱其清. 三波长分光光度法测定土壤中可溶态稀土总量. 土壤, 1992, 24(4): 219
- 8 Walsh J N. The Simultaneous Determination of the Major, Minor and Constituents of Silicate Rocks Using ICP-AES. Spectrochim. Acta, 1980, 35(2): 107
- 9 Hoyd M A, Floyd M A, Fassal V A. Computer-Controlled Scanning Monochromator for the Determination of 50 Elements in Geochemical and Environmental Samples by ICP-AES. Anal. Chem., 1980, 52(13): 2168
- 10 M claren J W, Berman S S. Simultaneous Determination of Major, Minor and Trace Elements in Marine Sediments by

ICP-AES. Anal. Chem., 1981, 53(12): 1802

- Crock J G, Lichte F E et al. . Determination of REEs in Geological Samples by ICP-AES. Anal. Chem., 1982, 54: 1329
- 12 Larson G F, Fassal V A Zr. Coprecipitation for Simultaneous Multielement Determination of Trace Metals in Seawater by ICP-AES. Applied Spectrosc., 1976, 30: 385
- 13 Maessen F J M J, Balke J and MdeBer J M. Preservation of Accuracy and Precision in the Analytical of Low Power ICP-AES. Spectrochim. Acta. part B, 1982, 37(6): 517
- 14 Buchanan A S, Hannaker P. Inductively Coupled Plasma Spectrometric Determination of Minor Elements in Concentrated Brines Following Precipitation. Anal. Chem., 1984, 56: 1379
- 15 Slanley E C. Multielement Analysis of 54 Geochemical Standard Samples by ICP-AES. Geostandards Newsletter, 1981, 5(2):133
- 16 曾宪津等. 土壤和沉积物样品 ICP-AES 多元素同时分析 基体元素的干扰及其校正. 分析化学, 1986, 14(7): 486

(上接第65页)

illum inated titanium dioxide. J. Catal. Lett., 1990, 4: 345-354

- 10 Dibble L A et al. Fluidezed-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Airstreams. Environ. S ci. T echnol., 1992, 26: 492–495
- Nimbles M R et al. . Direct Mass Spectrometric Studies of the Destruction of Hazardous Wastes. 2. Gas Phase Photocatalytic Oxidation of Trichloroethylene Over TiO₂: Products and Mechanism. Environ. Sci. Technol., 1993, 27: 732-740
- Yamazki-Nishida S et al. Photocatalytic degradation of trichloroethylene in the g as phase using titanium dioxide pellets. J. Photochem. photobiol. A: Chem., 1993, 70: 95-99

- 13 田中启一, 久永辉明. 有机卤化物的光分解. 环境技术
 (日), 1993, 22(4): 59—62
- 14 Peral J et al. . Heterogeneous Photocatalytic Oxidation of Gas-Phase Organics for Air Purification: Acetone, l-Butanol, Butyraldehyde, Formaldehyde, and m-Xylene Oxidation. J. Catal., 1992, 136: 554-565
- 15 Yunfu Sun et al.. Evidence for a Surface Dual Hole-Radical Mechanism in the TiO₂ Photocatalytic Oxidation of 2, 4-Dichlorophenoxyacetic Acid. Environ. Sci. Technol., 1995, (29): 2065-2072
- 16 Mao Y et al. Identification of Organic Acids and Other Interminates in Oxidative Degradation of Chlorinated Ethanes on TiO₂ Surfaces en Route to M ineralization. A Combinated Phtocatalytic and Radiation Chemical Study. J. Phys. Chem., 1991, (95): 10080-10089