饮用水中典型有机卤代物体外致突变性研究*

黄君礼

李海波

(哈尔滨建筑大学市政与环境工程学院 150008)

(深圳市自来水集团有限公司 518046)

甘卉芳 吴 坤

(哈尔滨医科大学公共卫生学院 150006)

摘 要 运用 Ames 试验, 对氯消毒饮用水中产生的典型的 8 种有机卤代物(CHCl₃、CHBr₃、CHCl₂Br、CHClBr₂、CCl₃CH(OH)₂、CH₂ClCOOH、CCl₃COOH、C₆H₃Cl₂OH) 进行了致突变试验. 结果表明,除 CH₂ClCOOH 和 CCl₃COOH 外, 其余 6 种有机卤代物均具有致突变作用.

关键词 有机卤代物, 致突变性, 饮用水消毒, Ames 试验.

Mutagenicity of Typical Organo-halogenated Compounds from Drinking Water

Huang Junli

Li Haibo

(Harbin Univ. of Arch. & Eng. , 150008)

(Shenzhen Water Supply (Group) Co Ltd, 518046)

Gan Huifan Wu Kun

(Harbin Medical University, 150006)

Abstract The mutagenicity of 8 kinds (CHCl₃, CHBr₃, CHCl₂Br, CHClBr₂, CCl₃CH (OH)₂, CH₂ClCOOH, CCl₃COOH, C₆H₃CH₂OH) of organo-halogenated compounds from drinking water disinfected with liquid chlorine was studied by using reliable experiment of Ames test. The results showed that the test 6 kinds of organo-halogenated compounds all have mutation, except for CH₂ClCOOH and CCl₃COOH.

Keywords liquid chlorine, organo-halogenated compound, mutagenicity, drinking water.

饮用水液氯消毒已有近百年的历史,国内水厂普遍采用液氯消毒处理饮用水. 然而近年来研究发现,氯与水中的微量有机物反应生成了有机卤代物,如三卤甲烷、氯乙酸、氯代酚和氯代醛等(水中常含有 Br⁻, Cl² 将 Br⁻ 氧化为Br², Br² 能与有机物反应生成溴代物). Sy mons等人对美国 80 个主要城市氯消毒饮水的调查中,发现普遍存在较高浓度的三卤甲烷^[1]; 我国24 个大中城市的饮水普查中也均检出了大量卤仿^[2]; U SEPA 在全美范围的饮水检测中,被检出的 289 种化合物有 111 种有机卤代物,占 38%^[3]; 在氯消毒的大庆东风水厂饮水中,笔者亦检出了 10% – 27% 的有机卤代物,其中包括卤仿,已有资料证明,卤仿有致癌作用,国外大

量文献亦报道了一些有机卤代物对人体的各种毒害作用,国内文献未见文中选取的8种有机卤代物的Ames试验结果报道.本文对这8种有机卤代物进行了体外致突变研究.

1 研究方法

1.1 主要试验材料

(1) 鼠伤寒沙门氏菌 TA98 和 TA100 菌株(美国加利福尼亚大学 Ames 实验室提供), 菌株鉴定合格, 其各种特性符合要求.

国家自然科学基金资助课题(Project of Supported by National Natural Science Foundation of China) 黄君礼: 男, 59 岁, 教授, 博士导师 收稿日期: 1997-05-10

(2) 大鼠肝微粒体酶 S9 混合液, 由哈医大毒理学教研室配制.

三氯甲烷(CHCl3), 纯度为 99.5%; 三溴甲

(3) 受试物采用化学纯品,分别为:

烷(CHBr³), 纯度为 98.0%; 一溴二氯甲烷(CHCl²Br), 纯度 $700\mu_g/ml$; 二溴一氯甲烷(CHClBr²), 纯度 $900\mu_g/ml$; 水合三氯乙醛(CCl³CH(OH)²), 纯度 99.5%; 一氯乙酸

(CCl³COOH), 纯度 99%; 2, 4-二氯酚 (C₆H₃Cl₂OH), 纯度 96%.

(CH₂ClCOOH), 纯度 99.5%; 三氯乙酸

1. 2 Ames 试验方法

Ames 试验采用鼠伤寒沙门氏菌 TA98 和TA100 2 种菌株,设有阴性对照(自发回变)和阳性对照,分别进行了不加S9混合液和加入S9混合液活化2种试验,实验基本是按照Ames等人1975年发表的文献[4],后经矢作多贵江修改的平板掺入法[5]标准试验进行的.每次试验各设2个平行样,试验重复3次,计算每皿回复突变菌落数,最后统计出6皿的平均回变菌落数,判断阳性结果的标准是:①诱变率MR 2(MR=检样诱发的平均回变菌落数/自发平均回变菌落数);②具有明确的剂量—反应关系和试验结果的重现性.

2 结果与讨论

用大干直接的.

2.1 CHCl³的 Ames 试验结果

由表 1 可见, CHCl $_3$ 不加 S9 的 TA98 和 TA 100 菌株在剂量为 $500\mu_{\rm g}$ /皿时 MR> 2, 且 有明显的剂量-反应关系, 试验呈阳性结果; 当 加入 S9 代谢活化后, TA98 菌株在同一剂量下仍呈阳性, 且 MR(4.18) 大于不加 S9 的 MR(2.49), 说明代谢产物的致突变性增强, 而 TA 100 加 S9 活化后转为阴性结果. 以上表明, CHCl $_3$ 既是移码型和碱基置换型的直接致突变物, 又是移码型的间接致突变物, 且间接诱变作

2. 2 CHBr3 的 Ames 试验结果

由表 1 可见, $CHBr^3$ TA100 菌株不加 S9 与加 S9 活化, MR 均小于 2, 试验结果为阴性;

而 TA 98 菌株,不加 S9 与加 S9, 剂量达 500μg/ 皿时, MR 分别为 2.04 和 3.58, 且有明确的剂 量-反应关系, 结果呈阳性. 说明 CHBr₃ 为直接 和间接的移码型诱变物, 且间接的诱变性强于 直接的.

2. 3 CHCl₂Br 和 CHClBr₂ 的 Ames 试验结果 试验结果分别见表 1 (检样不足, 未做+ S9 试验), 二者对 TA 98 和 TA 100 菌株均有明确 的剂量-反应关系, 当剂量达 150μg/皿或 50μg/皿时即 MR 大于 2, 试验呈阳性结果. 说明 CH₂Br 和 CHClBr₂ 具有很强的直接致突变作

用. 从呈现阳性所需的剂量看, $CHCl^2Br$ 和 $CHClBr^2$ 的直接致突变活性均明显大于 $CHCl_3$ 和 $CHBr^3$ 呈阳性结果所需剂量为 $500\mu g/$ 皿); 另外, $CHCl^2Br$ 的致突变活

性,碱基置换型的大于移码型的,CH Br3 的致突

变活性, 移码型的大于碱基置换型的. **2.4** CCl₃CH(OH)₂ 的 Ames 试验结果

2. 4 CCl₃CH(OH)₂ 的 Ames 试验结果由表 1 可见, TA98 菌株, 剂量高达 5000μg/皿, 不加与加 S9 活化, 试验结果均为阴性; 而 TA100 菌株, 不加与加 S9, 剂量为 2500μg/皿时均呈阳性结果(MR 均大于 2, 有剂量-反应关系), 同时可看出加 S9 活化后诱变活性有所加强. 以上说明水合三氯乙醛为碱基置换型诱变剂, 且间接的诱变活性强于直接的. 另 外, 从 显 示 阳 性 所 需 的 剂量 看, CCl₃CH(OH)₂ 的 致 突 变 性 小于 CHCl₃ 和 CHBr₃.

2. 5 CHClCOOH 和 CCl₃COOH 的 Ames 试验结果

结果见表 1, 二者对 TA98 和 TA100 菌株, 不加 S9 与加 S9 活化, MR 均小于 2, 剂量即使增至 $5000\mu g/$ 皿, 结果仍为阴性. 这说明 CHCICOOH 和 CCI_3COOH 没有致突变作用.

2. 6 C₆H₃Cl₂OH 的 Ames 试验结果

结果见表 1, 对 T A 98 菌株, 不加与加 S 9, 试验均为阴性结果; 对 T A 100 菌株, 不加 S 9 时 呈阴性, 当加 S 9 活化后, 剂量达 $500\mu_g$ / 皿时转为阳性(MR= 2.45, 存在剂量—反应关系), 说明 $C_6H_3Cl_2OH$ 是间接的碱基置换型致突变物.

2.7 Ames 试验结果归纳

将 8 种有机卤代物的 A_{mes} 试验结果归纳列于表 2. 除 CHCICOOH 和 CCl_3COOH , 其余 6 种有机卤代物均有直接或间接的致突变作用, 有的为移码型, 有的为碱基置换型(详见表 2) , 其致突变活性次序为: $CHClBr_2$ 、 $CHCl_2Br_3$ $CHBr_3$ 、 $CHCl_3$ $C_6H_3Cl_2OH$ > $CCl_3CH(OH)_2$.

2.8 有机卤代物致突变机理探讨

有机卤代物的致突变作用,来源于其特定的活性基团卤素.卤素有较强的吸电子效应,可使有机卤代物分子极性增强,在体内易和酶系统结合,一般通过以下几种方式实现其碱基置换型和移码型的致突变作用^[6]:

(1) 有机 卤代物取代DNA链上的碱基类

表 1 水中 8 种有机卤代物的 Ames 试验结果

	样 品 - 加入量 /µg・皿 ⁻¹	T A 98 菌株				TA100 菌株			
样 品		- S9		+ S9		- S9		+ S9	
		平均回变 M R 菌落数		平均回变 MR 菌落数		平均回变 M R 菌落数		平均回变 M R 菌落数	
1) CHCl.	5	14. 7	1.10	30. 3	1.50	99.8	0.94	144. 2	1. 17
(1) CHCl ₃	50	16. 2	1.21	32.8	1.62	106. 1	1.00	132. 1	1.07
	500	33.4	2. 49	84. 5	4. 18	253. 1	2. 38	108. 2	0.88
(2) CHBr ₃	0. 5	16.0	1. 19	26. 5	1.31	109. 7	1.04	165. 9	1.34
	5	16. 2	1. 21	34. 4	1.70	92. 3	0.87	141. 1	1. 14
	50	18.4	1.37	33.0	1.63	144. 8	1. 37	162. 4	1.31
	500	27. 3	2. 04	72. 3	3. 58	185. 9	1.76	168. 2	1. 36
	0. 5	12. 3	0. 92			104. 3	0.99		
(3) CHCl ₂ Br	5	13.0	0.97	(-	. (1)	84. 9	0.80		-)
	50	15.6	1.16	(–) .	214. 2	2.03	(-	,
	150	31.1	2. 32			280. 1	2. 65		
(4) CHClBr ₂	0. 5	16. 2	1. 21			108. 9	1.03		
	5	24.0	1. 79	(-	-) 1)	140.0	1.33	(-	-)
	50	29. 7	2. 22	() -7	112.7	1.07	(–	,
	150	45.8	3.42			251.6	2. 38	_	
(5) Cl ₃ CH(OH) ₂	0. 5	12.0	0. 96	(-	-)	85.4	0.99	(-	-)
	5	12. 1	0.97	(-	-)	103.6	1. 20	(-	-)
	50	16. 2	1.30	18. 5	0.95	114. 1	1.32	163. 4	1. 27
	500	17. 6	1.41	18. 7	0. 96	154. 6	1.79	213.6	1.66
	2500	15. 9	1. 27	19. 7	1.01	182. 7	2. 11	419.0	3. 25
	5000	22. 3	1.78	20. 5	1.05	184. 1	2. 12	233.8	1.81
(6) CH₂ClCOOH	0. 5	11.2	0.89	17. 0	0. 87	78. 4	0.91	146. 3	1. 13
	5	11.0	0.88	16. 7	0.86	71.4	0.82	125. 1	0. 97
	50	13.3	1.06	16. 1	0.83	96. 6	1. 12	163.4	1. 27
	500	11.8	0.94	19. 3	0. 99	105. 1	1.21	138.0	1.07
	2500	12.0	0.96	(-	-)	98. 7	1. 14	(-	-)
	5000	5. 1	0.41	()		(—)		(—)	
(7) CCbCOOH	0. 5	13.0	1.04	13.3	0.68	88. 9	1.03	147. 0	1. 15
	5	12.4	0.99	19.7	1.01	93. 1	1.08	133.0	1.03
	50	11.8	0.94	15.0	0.77	89. 3	1.03	141.8	1. 10
	500	13.5	1.08	17. 6	0.99	93. 8	1.08	175. 8	1. 36
	2500	13.6	1.09	(-	-)	120. 9	1. 19	(-	-)
	5000	8.0	0.64	(-	-)	(-	-)	(-	-)
(8) C ₆ H ₃ Cl ₂ OH	0. 5	11.5	0.92	21.7	1. 11	78. 4	0.91	121.3	0. 94
	5	13.2	1.06	12.6	0.65	81.9	0.95	127.5	0. 99
	50	11.8	0.94	19. 3	0.99	97. 6	1. 13	214. 6	1.66
	500	10.5	0.84	20.0	1.03	84. 3	0.97	316. 4	2. 45
	2500	(-	-)	(-	-)	81. 2	0. 94	(-	-)
	自发回变								
(1)((2)(3)(4)	13.4	1.00	20. 2	1.00	105. 7	1.00	123.5	1.00
(5)((6) (7) (8)	12. 5	1.00	19. 5	1.00	86. 8	1.00	129. 0	1.00
RDM	E对照: – S9 时	応用 Dex	n62μg/ ∭	+ S9 时应用	2_A F5µg/ [Ⅲ, 每次试验增	匀呈明显的:	性结果	

样品名称	直接该	秀变剂(- S9)	间接诱变剂(+ S9)			
作品有机	移码型(TA98)	碱基置换型(TA 100)	移码型(TA98)	碱基置换型(TA100)		
CHCl3	是(++)	是(++)	是(+ +)	不是		
CHBr3	是(++)	不是	是(+ +)	不是		
CHCl ₂ Br	是(+++)	是(+++)				
CHClBr 2	是(+++)	是(+++)				
CCl ₃ CH(OH) ₂	不是	是(+)	不是	是(+)		
$\mathrm{CH_{2}CIC}\mathrm{OO}\mathrm{H}$	不是	不是	不是	不是		
CCl ₃ C OO H	不是	不是	不是	不是		
C6H3Cl2OH	不是	不是	不是	是(++)		

表 2 水中 8种典型有机卤代物的致突变类型及活性归纳¹⁾

1) + 、+ + 、+ + + 分别表示剂量为 2500µg/ 皿、500µg/ 皿、500µg/ 皿或 150µg/ 皿时出现阳性结果, 即+ 越多, 致突变活性越强

似物. 如 5-溴脱氧尿嘧啶核苷(Brdu) 可以取代 DNA 链上的胸腺嘧啶.

- (2) 有机卤代物对 DNA 链上的碱基进行 烷基化. 如双(2-氯乙基) 硫化物和双氯甲醚能
- 直接与 DNA 链上的碱基进行双烷化作用.
 (3) 某些有机卤代物可以嵌入 DNA 双螺
- 旋结构的相邻多核苷酸链上或 DNA 单链的碱基之间.

3 结论

- (1) 水中典型的 8 种有机卤代物,除 CH₂ClCOOH 和 CCl₃COOH 外,其余 6 种均具 有致突变性.
- (2) CHCl³ 和 CHBr³ 及其代谢产物为移码型的诱变剂, CH²Cl³ 又是碱基置换型的直接诱变剂.
- (3) CHCl₂Br 和 CHClBr₂ 既是移码型的直接诱变剂, 又是碱基置换型的间接诱变剂.
 - (4) CCl3CH(OH)2 及代谢产物是碱基置

换型诱变剂.

- (5) C₆H₃Cl₂O_H 为碱基置换型的间接诱变剂.
- (6) 6 种有机卤代物的致突变活性顺序 为: CHClBr²、CHCl²Br > CHBr³、CHCl³ C6H³Cl²OH> CCl³CH(OH)².

参考文献

- 1 James M, Symons et al. . Journal AWWA, 1975, 67(11): 634-647
- 2 黄君礼等. 国内主要水厂卤仿的调查. 环境化学, 1987, **6** (4):80-86
- 3 Okun D A Amer Journal of Public Health, 1976, **66**(9): 639
- 4 Ames B N et al.. Method for detecting carcinogens and mutagens with the salmonella/mamma-lianmicrosome mutagenicity test. Mutation Research, 1975, 31: 347-364
- 5 矢作多贵江.蛋白质核酸 酵素,1975,20:1178
- 6 万伯健主编. 卫生毒理学. 沈阳: 辽宁科技出版社, 1992: 221—222