异戊二烯与 O₃ 反应体系中有机氢过氧化物 和 H₂O₂ 的产率研究^{*}

李 爽 陈忠明 任信荣 邵可声 唐孝炎

(北京大学环境科学中心环境模拟与污染控制国家联合重点实验室,北京 100871)

摘 要 用双通道 $H_{2}O_{2}$ 分析系统研究了室 温条件下异戊二烯与 O_{3} 气相暗反应体系中有机氢过氧化物和 $H_{2}O_{2}$ 的产率.3 次实验测得有机氢过氧化物的产率分别为 3.8%、4.3%和 3.9%,平均为 4.0%; $H_{2}O_{2}$ 的产率分别为 2.2%、1.6%和 1.8%,平均为 1.9%.探讨了异戊二稀与 O_{3} 反应体系中有机氢过氧化物和 $H_{2}O_{2}$ 的生成机理. 关键词 异戊二烯, O_{3} ,双通道 $H_{2}O_{2}$ 分析系统,有机氢过氧化物, $H_{2}O_{2}$.

已进行的对异戊二烯与 O₃ 反应的研究 中^[1-5],大多数是对甲基丙烯醛、甲基乙烯基酮 和 HCHO 等主要产物的产率分析,异戊二烯– O₃ 反应对有机氢过氧化物和 H₂O₂ 贡献的报道 较少.本文将长光路 FTIR(LP-FTIR)系统和 双通道 H₂O₂ 分析系统结合,进一步研究室温 条件下异戊二烯与 O₃ 反应体系中的有机氢过 氧化物和 H₂O₂ 的产率.利用 FTIR 光谱仪,实 时监测长光路石英气体反应池内的模拟大气化 学反应;利用双通道 H₂O₂ 分析系统,分析反应 中生成的有机氢过氧化物和 H₂O₂.

1 实验部分

1.1 实验试剂

H2O2, 北京化工厂,浓度 30%,优级纯. 对羟基苯乙酸, 美国 EASTMAN KODAK 公司. 过氧化物酶(辣根),上海丽珠东风生物技术有限公司. 邻苯二甲酸氢钾, 北京化工厂,分析纯. 磷酸二氢钾, 北京化工厂,分析纯.

1.2 实验设备

(1) 长光路 FT IR 系统 长光路 FT IR 系 统主要由长光路石英气体反应池和 FT IR 光谱 仪 2 部分组成^[6].反应池容积 28.5L(池体内直 径 15.4cm,池长 153.2cm),池内装有怀特反射 镜系统,能使红外光进行多次反射。本实验用光 路长为 83.1m,分辨率为 1cm⁻¹,扫描次数为 64 次,波长范围 500—4000cm⁻¹, MCT 检测器。 (2) 双通道 H2O2 分析系统 仪器的基本 原理是利用对羟基苯乙酸和过氧氢化物在过氧 化物酶的催化作用下反应生成二聚物,此二聚 物在紫外光的激发下产生荧光,给出光信号.通 过检测器测定荧光的强度,可得到有机氢过氧 化物和 H2O2 的浓度.

(3) 高效液相色谱仪(型号: Hewlett Packard-Series 1050) 荧光检测器型号为 Hewlett Packard HP 1046A, 荧光检测的基本 原理与 H₂O₂ 分析系统的检测原理完全相同.

2 结果与讨论

2.1 反应中有机氢过氧化物和 H2O2 产率

有机氢过氧化物和 $H_{2}O_{2}$ 不仅可以作为大 气中 $OH_{x}HO_{2}$ 和 RO_{2} 自由基的源^[7], 而且还可 以将大气水相中的S() 氧化成 S()^[8], 从而 对酸雨的形成起到重要作用. 近年来的研究发 现, 由烯烃和 O_{3} 反应生成的有机氢过氧化物 对植物有很大的危害, 甚至要大于 O_{3} 的直接 作用^[9], 会进一步造成森林退化. 因此, 研究异 戊二烯与 O_{3} 反应对大气环境中有机氢过氧化 物和 $H_{2}O_{2}$ 的贡献具有重要的意义.

(1) 有机 氢过氧化物的 高效液 相色谱(HPLC)分析 HPLC 分析生成的有机氢过氧化物和 H2O2 的方法见文献[10]. 本实验室限

^{*} 国家自然科学基金重大项目(编号:49392703) 收稿日期:1997-05-14

干条件,采样操作系统还不完善,不适合直接用 HPLC 对反应中生成的有机氢过氧化物和 H₂O₂ 进行定量分析,只列出定性分析的结果, 用液氮冷阱采样. 将一个气体采样管浸入装液 氮的保温杯中,在采样管和石英气体反应池之 间放一个蠕动泵,将采样管和反应池连接起来. 蠕动泵的转速连续可调.打开蠕动泵,反应池内 的气体样品在蠕动泵的蠕动下进入采样管,被 液氮冷阱冷却下来,气体样品的流速为100ml/ min. 连续采样 2min. 采样结束后. 待采样管冷 却至室温,加入 1ml pH 值为 3.5 的稀 H3PO4, 使采到的有机氢过氧化物和 H2O2 完全溶解. 然后用 100μ] 的微量进样器取样品溶液 100μ], 打开进样阀进样,色谱的分离柱采用 C-18 反相 色谱柱. 流动相为 pH 值 3.5 的稀 H₃PO₄, 流速 为 0.6ml/min. 缓冲液为 0.05mol/L 的磷酸二 氢钾溶液.反应试剂为辣根过氧化物酶(10u/ ml)和对羟基苯乙酸的磷酸二氢钾溶液(8× 10⁵mol/L), 流速为 0. 1ml/min. 荧光产生后, 以 0. 16ml/min 的流速通入 0. 1mol/L 的 NaOH 溶液,增加荧光强度.荧光检测器的激光波长设 置为 237nm, 发射波长 405nm. 经荧光检测, 只 发现 2 个信号峰. 与标准样品的信号峰比较可 得到,保留时间 4.50min 的信号峰为 H2O2,而 保留时间 5.83min 的信号峰为 CH₃OOH. 这说 明,在本反应条件下,异戊二烯-O3反应产物中 的有机氢过氧化物只有1种,即CH3OOH.这 样,完全可以用双通道 H2O2 分析系统对反应 中生成的CH₃OOH 和 H₂O₂ 作定量分析.

(2) 双通道 $H_{2}O_{2}$ 分析系统研究有机氢过 氧化物和 $H_{2}O_{2}$ 的产率 3 次实验的异戊二烯 初始浓度分别为 5.54 × 10^{14} mol·cm⁻³, 3.88 × 10^{14} mol·cm⁻³, 2.66 × 10^{14} mol·cm⁻³, 反应 30 m in. 在双通道分析系统^[11]中, B 通道在加入 荧光试剂前, 加入过氧化氢酶使 $H_{2}O_{2}$ 被选择 性分解, 这样 B 通道中产生荧光二聚物的量仅 由空气中有机氢过氧化物的浓度决定, 而 A 通 道中不加过氧化氢酶, 产生荧光二聚物的量由 有机氢过氧化物和 $H_{2}O_{2}$ 的总量决定. 将信号 A 和信号 B 作差, 所得值即为 $H_{2}O_{2}$ 产生的信 号. 而本实验中 B 通道用对 $H_{2}O_{2}$ 破坏效率较 高的 $M_{n}O_{2}$ 反应管代替过氧化氢酶, 分解该通 道 中的 $H_{2}O_{2}$, 对于 $H_{2}O_{2}$ 的分解效率 可达 80%—90%, 同时 $M_{n}O_{2}$ 对于有机氢过氧化物 的分解近似为零, 这样在 B 通道中检测到的浓 度为反应中生成的有机氢过氧化物总量, 而 A 通道中检测到的浓度为反应中生成的 $H_{2}O_{2}$ 和 有机氢过氧化物之和.

将长光路气体反应池的出气口与 H₂O₂ 分 析系统的采样口相连,将反应池内的气体抽出, 连续监测直至检测器的信号降至零点,可得到 A、B 通道荧光信号随时间变化的 2 条积分曲 线,计算积分结果可分别得出有机氢过氧化物 和 H₂O₂ 的产率,列于表 1 中.

表1 有机氢过氧化物和 H₂O₂ 的产率

实验 编号	反应的 异戊二烯 [/] mol	生成的有机 氢过氧化物 [/] mol	生成的 H ₂ O ₂ /mol	有机氢 过氧化物 的产率 /%	[₂ O ₂ 的 产率 /%
1	1.15×10^{19}	4. 34 × 10 ¹⁷	2. 54 × 10 ¹⁷	3.8	2.2
2	8.25×10^{18}	3. 54 × 10 ¹⁷	1. 34 × 10 ¹⁷	4.3	1.6
3	5.49×10^{18}	2. 16 × 10 ¹⁷	9.88 × 10 ¹⁷	3.9	1.8

由 HPLC 分析的结果,反应中生成的有机 氢过氧化物只有 CH₃OOH,因此反应中有机氢 过氧化物的产率即为 CH₃OOH 的产率.

2.2 异戊二烯与 O₃ 反应体系中有机氢过氧 化物和 H₂O₂ 的生成机理探讨

异戊二烯-O3 体系中有机氢过氧化物和 H2O2 的生成机理可由下列反应式来描述:

 $CH_2 = CH_- (CH_3)C_= CH_2 + O_3$

 CH_2OO+ HCHO+ CH_3+ 其它产物 (1) CH_3+O_2 CH_3OO (2) CH_3OO+ HO_2 CH_3OOH+O_2 (3) CH_2OO+ H2O HOCH2OOH (4) HO_2+ HO_2 $H_2O_2+O_2$ (5)

本实验中只检测到了 H₂O₂ 和 CH₃OOH, 并未检测到 HOCH₂OOH(HM HP). 而在一些 国外研究组的实验结果中^[12], 观察到反应中生 成的稳定的有机氢过氧化物主要为 CH₃OOH 和 HOCH₂OOH. 在近期的研究中^[12,13], 都认为 CH₂OO 双自由基与H₂O 的反应是 HMHP 的 主要来源,而日也都认为H2O 含量的高低会对 HM HP 的产率有很大的影响.

在本实验体系中,由于反应器中由高纯 N₂ 和高纯 02 所充满,水蒸气的含量不会太高,远 远达不到饱和浓度,如果按照上述的结论,即使 有 HM HP 生成, 浓度也会很低, 而本实验利用 HPLC 方法对异戊二烯-O3 反应体系研究的结 果也证明了这一点.

HMHP的另一个可能来源为HO2自由基 的连续反应,首先与 HCHO 反应,再与生成的 加成产物反应^[12]:

HO₂+ HCHO HOOCH₂O (6)

HOOCH₂O OOCH₂OH (7)

OOCH2OH+HO2 HOOCH2OH+ O2 (8)

由于这些反应的速率较慢,可能仅能代表 大气环境中 HM HP 来源的一小部分. 但这种 说法还存在着争议,由于异戊二烯-03反应体 系中有大量的 HCHO 生成, 而 HCHO 的光解 又是 HO_2 自由基的主要来源,因此 HMHP 的 来源还并不十分清楚.

反应中 CH₃ 自由基生成的机理比较复杂. 要经过多步反应,本文对其生成机理进行简要 地推测

 $CH_2 = C(CH_3)CH = CH_2 + O_3$

 $CH_2 = C(CH_3)CHO + CH_3COCH = CH_2$ (9)

 $CH_2 = C(CH_3)CHO + O_3$

 $HCHO + CH_{3}C(OO)CHO$

 $H_2COO + CH_3C(= O)CHO$ (10)

 $CH_{3}COCH = CH_{2} + O_{3}$

HCHO+ HC(OO) $C(= O) CH^{3}$

$$H_2COO + CH_3C(= O)CHO \qquad (11)$$

 $CH_{3}C(OO) CHO O + CH_{3}C(=O) CHO$ (12)

 $HC(OO)C(=O)CH_3$ O+ CH₃COCHO (13) $CH_3C(= O)CHO+OH+O_2$

CH₃COO₂+ H₂O+ CO

(14)

 $CH_3COO_2 + CH_3COO_2 = 2CH_3CO_2 + O_2$ (15)

CH₃CO₂ CH₃+ CO₂ (16)

其它实验结果也证明[11,12],在不含甲基官

能团的烯烃-O3 反应体系中. 检测不到 M HP. 进一步证实了上述的反应途径.

结论 3

在本反应条件下,有机氢过氢化物主要为 CH300H.3 次实验的产率结果为: 有机氢过氧 化物 3.8%, 4.3%, 3.9%, 平均为 4.0%; H2O2 2.2%,1.6%,1.8%,平均为1.9%,虽然在产 物中仅占较小部分,但这样的产率可能足以对 环境造成不利影响。

> 紶 考 文 献

- 1 Kames R M et al. . Ozone-is oprene reactions: Product for mation and aerosol potential. Int. J. Chem. Kinet., 1982, 14:955
- 2 Niki H et al.. Atmospheric ozone-olefin reaction. Environ. Sci. Technol., 1983, 17(7): 312A
- 3 Paulson S E et al. Atmospheric photooxidation of isoprene Part : The ozone-isoprene reaction. Int. J. Chem. Kinet., 1992, 24: 103
- 4 Paulson S E et al.. Development and evaluation of a photooxidation mechanism for isoprene. J. Geophys. Res., 1992, 97(D18): 20703
- 5 Atkinson R et al. . Rate constants for the gas phase reactions of O_3 with the natural hydrocarbons isoprene and α and *B*-pin ene. Atmos. Environ., 1982, **16**(5): 1017
- 6 李爽等,异戊二烯与 03 的大气化学反应研究,环境科学, 1997.18(5):10
- 7 Jacob D J. Chemistry of OH in remote clouds and its role in the production of formic acid and peraxymonosulfate. J. Geophys. Res, 1986, 91: 9807
- 8 Daum H et al. Measurement of the chemical composition of stratiform clouds. Atmos. Environ., 1984, 18: 2671
- 9 Hewitt N. and Terry G. Understanding ozone plant chemistry. Environ. Sci. Technol., 1992, 26: 1890
- 10 Hellpointner E and Gab S. Detection of methyl, hydrox ymethyl and hydroxyethyl hydroperoxides in air and precipitation · Nature · , 1989, 337: 631
- 11 Lazrus A L et al. Automated fluorometric method for hydrogen peroxide in air. Anal. Chem., 1986, 58: 594
- 12 Hatakeyama S et al.. Production of hydrogen peroxide and organic hydroperaxides in the reaction of ozone with natural hydrocarbons in air · Chem · Lett., 1993: 1278
- Gab S et al. . Formation of alkyl and hydroxyallkyl hy-13 droperoxides on ozonolysis in water and in air. Atmos. Environ., 1995, 29: 2401

Zhang zhou.

Keywords: SO², washout, stable isotope, model, Mingnan Area, summer.

Hydroperoxides Study of Organic and H₂O₂Yields in Isoprene and O₃ Reactions. Li Shuang et al. (The State Key Lab of Environ. Simulation and Pollution Control, Center of Environ. Sci., Peking Univ., Beijing 100871): Chin. J. Environ. Sci., 18(6), 1997, pp. 16-18 The atmospheric reaction of isporene with O₃ was simulated under the dark and room temperature in the 28.5L guartz reactor coupled with a Long Path Fourier Transform Infrared Spectrometer, while the Dual Channel H2O2 Analytical System was used to determine the production of organic hydroperoxides and H₂O₂. Yields measured respectively in the three repeated experiments are 3.8%, 4.3% and 3.9% for organic hydroperoxides with the average of 4.0%, and 2.2%, 1.6% and 1.8% for H2O2 with the average of 1.9%. The formation mechanisms of organic hydroperoxides and H2O2 were briefly discussed.

Keywords: isoprene, O₃, Dual Channel H₂O₂ Analytical System, organic hydroperoxides, H₂O₂.

The Atmospheric Diffusion Parameter in Various Terrain in Comparison with Each Other in Shandong Province. Mao Hengqing (National Meteorological Center, Beijing 100081) *Chin. J. Environ. Sci.*, **18**(6), 1997, pp. 19–22

Analysing the experimental result in Shandong province, it is found that the atmospheric diffusion parameters vary obviously with terrain. The diffusion parameters are about as big as that of national standard in the plain and half to one class bigger than it in the mountain areas. In industrial park the cross-wind diffusion parameter is about the same as while the vertical one is one more class bigger than that of national standard. In coastal areas the cross-wind parameter is bigger slightly and the vertical one is smaller slightly than that of national standard. The pollutant diffusion density and the air diffusiophoretic velocity are related directly to the diffusion parameter.

Keywords: atmospheric diffusion parameter, national standard, air pollutant, cross-wind

diffusion parameter, vertical diffusion parameter.

Cross-flow Membrane Bioreactor for Domestic Wastewater Treatment and Its Biological Behavior. Xing Chuanhong, Qian Yi (State Key Lab of Environ. Simulation and Pollution Control, Dept. of Environ. Eng., Tsinghua Uni., Beijing, 100084), Chin. J. Environ. Sci., **18** (6), 1997, pp. 23-26

It is proven that Crossflow Membrane BioReactor (CMBR) applied to domestic wastewater treatment, under conditions of hydraulic retention time 5h, sludge retention time 15d, membrane surface velocity 4m/s and membrane flux 75, $150L/(m^2 \cdot h)$, is technically feasible and reliable during six weeks. Removal rate of COD, NH₃-N, and turbidity of the system are equal to or higher than 97%, 97% and 98%, SS and E. coli., 100%. The effluent quality is always better than the quality standard for reuse issued by the Ministry of Construction in China. An important formula to calculate the sludge concentration for CMBR at steady state is successfully derived from material balance equations. The apparent yield factor Yg is approximately 0. 65mgVSS/mg COD and the decay constant, 0. 1d⁻¹. Furthermore, the biofacies analysis of CMBR is included.

Keywords: crossflow, membrane, bioreactor, biological behavior, domestic wastewater.

Photochemical Treatment of Selected Organic Wastewater. Zhu Chunmei et al. (State Key Lab. of Pollution Control and Resource Reuse, Dept. of Environ. Sci. and Eng., Nanjing Univ. 210093): Chin. J. Environ. Sci., 18(6), 1997, pp. 27—30

The photochemical oxidation treatment for selected organic wastewaters which were hard to degrade and were performed by adding H₂O₂ or some semiconductor powder and bubbling of O₂ or O₃ under sunlight or a middle pressure mercury lamp. The results showed that the removal rates of COD, oil and volatile phonols were 26. 4% - 60%, 39. 8% - 97. 8% and 86. 3% - 100% respectively for the wastewaters of oil refinery and coking industry; the removal rates of COD and decoloration rates were 48% - 75%, 80% - 100% for selected