汉中地区稻田土壤的放射性水平研究*

王 亮 侯振海 谷雅琴 沈秀娟 石本安 王建设 沈荣祖 杜白则 (陕西省预防医学研究所)

环境放射性物质在大气、水体、土壤和生物介质中总是处于动态循环,并与人体健康密切相关。 放射性物质在环境介质中的水平及运动规律的研究,国内外已做了不少工作,特别是随着人们对小剂量长期照射效应认识的深入,越来越引起人们的重视.

本文是配合"汉中地区大米的放射性水平研究及内照射剂量估算"**一文,拟取约占全地区稻谷播种面积90%,产量95%的汉中、城固、南郑、勉县、洋县和西乡六个县的稻田土壤为抽样的统计学总体。有关实验样本

的统计学设计、实验方法和质量控制等均与文献**类同,不再赘述.

本文着重研究了汉中地区稻田土壤中天然 U、Th、 26 Ra、 40 K 和总 β 的放射性,对于比较重要的人工核素 90 Sr 和 137 Cs 也做了一定工作。

样品采集与分析

1982 年稻谷收获季节, 我们在设计好的 采样地点 (见图1) 的稻田中随机 选 L m² 面积,用五点法(四角和中央) 取 10 × 10 × 10

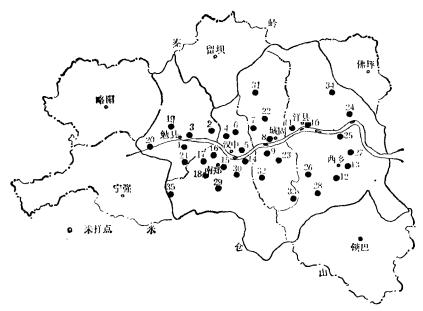


图 1 稻田土壤采样点的分布

cm 的 5 块土壤,混合装人干净的塑料袋中, 扎紧带口称重。 压碎成小块,在 105℃下烘 干(约 24 h),拣去可见的根系和其它杂物。

^{*} 参加本工作的还有李辑银、张淑身、李建平、李天来、

^{**} 王亮等,汉中地区大米的放射性水平研究及内照射 剂量估算,陕西省卫生防疫站年报,157,(1984)。

环 境 科 学

主 1	分析方法,	SM N N SK	型条件
表!	分价力法、	、海面1人3%、	、灭蝎医

分析项目	分析方法	测量仪器	灵敏度
υ	HNO ₃ -H,O ₂ 分解,乙酸乙 酯萃取,固体荧光法测定	WYG-LA光电荧光光度计	$2.30\times10^{-8}\mathbf{g}\cdot\mathbf{k}\mathbf{g}^{-1}$
Th	Na,O, 碱熔,分光光度 法测定	72 型光电分光光度计	0.061×10 ⁻⁶ g·kg ⁻¹
²²⁶ Ra	Na,O ₂ -NaOH碱熔 Ba(Ra)SO ₄ 共沉淀富集,射 气闪烁法测定	FD-125 室内氡钍分析器	2.17×10 ⁻¹³ g·kg ⁻¹
⁴ ⁰ K	王水分解,火焰光度计测定	630 型火焰光度计	0.5Bq·kg-1
90SI	发	FJ-2600 低本底 α/β 测 量仪	0.0167Bq·kg-1
¹³⁷ Cs	KCFC 吸附法	FJ-2603 低本底 α/β 测 量仪	0.062Bq·kg-1
	直接铺样制源	FJ-2600 低本底 α/β 测 量仪	0.106Bg·kg-1

再称重、粉碎、缩分、过筛(200 目). 过筛之 土样称重后在 450℃马福炉中灼烧 8 h, 放凉 后装人于净的磨口玻璃瓶中,备用。

分析方法、测量仪器和灵敏度情况见表 I. 表 1 中的灵敏度是对大米样品而言的.显然,这对于测定土壤样品无疑是完全能够满足的.

结果与讨论

本实验将每个样品平行分析 2—4 份,取 其均值;测定了 35 个样品的 U、Th、 226 Ra、 40 K 和总 β 的实测值及其均值,还测定了 6 个样品的 90 Sr 和 137 Cs 的实测值及其均值,结果见表 2 和表 3.

我们对表 2 所列实测值进行了数理统计 处理,由此探讨稻田土壤放射性的存在特点 及其有关的规律性.

(一) 各组放射性水平的一致性检验

表 4 列出了根据表 2 数据计算的平川 (A组)、丘陵 (B组)和山地 (C组)三个组 放射性水平的均值及标准差。按水平数为 3 (三个组),重复数(即样品数)不等,效应为固定模型的单因素方差分析方法^山,对其进行一致性检验。计算求得的检验统计量 F与 z² 值也列入表 4.

从表 4 看出,除 40 K 的 $F > F_{0.05}$ 外,其余的都是 $F < F_{0.05}$;除 40 K 外, U、Th、 226 Ra 和总 β 在 A、B、C 三组的放射性均值都相一致. 由于 F (总 β) < F(U) < F^{226} (Ra) < F(Th) < F(40 K),所以放射性核素在三组相一致的程度依次为 40 K < Th < 226 Ra < U < 总 β 。除 x^2 (Th) > $x^2_{0.01}$ 外,其余方差检验的统计量都是 $x^2 < x^2_{0.01}$;即当 $\alpha = 0.01$ 时,除 Th 的方差各组非齐性外,其它的都是方差齐性。

(二)放射性核素含量的频度分布

通过分布假设的正态性或对数正态性的 W 检验表明,当 $\alpha = 0.05$ 时, U、 20 Ra 和总 β 的放射性含量的频度都服从正态分布; 40 K 服从对数正态分布;而 Th 既不服从正态分布也不服从对数正态分布(见图 2、图 3). 基于频度分布的研究,样本的特征统计量,除对放射性含量都给出了算术均数(\bar{X})和标准差(\bar{S})外,对 40 K 还给出了几何均数和几何标准差.(在数据处理中,我们近似按正态分布处理).

(三)总体参数μ和σ的区间估计

计算求得的总体参数 μ 和 σ 的 95% 置信区间列人表 5.

(四)放射性水平的地理分布

表 2 稻田土壤中 U、Th、226Ra、40K、总β实测值* (Bq·kg⁻¹)

						
样品号	采样地址	υ	Th	226R.3	•uK	負身
82 A-1	天 堰	3.04±0.00	6.02±0.8	28.0±0.6	95.7±2.4	831±16
-2	段家坝	5.39±1.02	56.1±1.6	30.4±0.4	112.3±2.9	490 <u>±</u> 20
-3	东风	7.36±0.52	39.0±0.8	26.6±1.7	79.2±2.0	730±16
-4	新沟桥	12.53±0.04	63.8±0.0	31.4±3.1	145.6 + 3.7	1006±20
-5	新民寺	11.41±1.44	60.6±1.2	30.7±0.2	173.5±4.5	1078±20
-6	武多	6.23±0.28	48.0±2.0	30.1±0.8	79. i±2.0	760±16
-7	文 川	3.61±0.37	41.9 <u>+</u> 1.6	26.2±1.5	85.9±2.9	733±16
-8	闭结	10.37±1.21	58.6±0.4	31.2±0.4	118.8-4.9	887±18
-9	, 南坎营	8.89±0.49	45.1±1.2	25.5±1.3	93.5±3.1	824 <u>±</u> 17
-10	贯溪	11.61±1.97	59.0±0.4	29.6±0.9	90.7±3.0	790 + 16
-11	谢村	7.21±0.59	61.0±3.3	32.7±1.0	172.1±5.7	925土19
-12	杨河	10.08±1.19	53.7±0.0	34.9±0.9	151.6±3.3	959±19
-13	板桥	11.42±0.33	51.2±0.0	19.6±0.3	10+.2±3.5	882 <u>±</u> 18
-14	马家咀	10.34±0.00	50.4±2.4	20.8±0.2	82.6±1.8	841±18
-15	周家坪	10.70±0.86	49.6±0.4	26.4±1.2	138.4±2.6	862±18
-16	安 坎	7.48±0.71	52.5±1.2	28.5±0.4	96.9±2.1	809- <u>F</u> 16
-17	新集	11.41±0.57	56.9±0.4	36.5±1.0	139.2±3.0	957±1%
-18	团结	7.09±0.58	40.7±2.8	19.3±0.5	161.6±3.5	791 ± 15
82B-19	两河口	11.20±0.28	36.2±0.0	23.7±0.6	113.4±2.1	531±14
-20	铜钱坝	8.60±0.49	53.7±0.4	32.0 ± 0.2	198.5±3.7	1188±21
-21	阜川	10.78±0.07	55.7±0.4	27.7±1.5	168.7±3.1	1040土19
-22	许家庙	8.33±0.32	57.7 <u>+</u> 2.0	40.7±2.5	138.7±2.6	898士18
-23	盐井	11.65±1.69	50.8±0.0	22.6±1.1	90.3±1.4	930±18
-24	金水	7.87±0.84	50.8±0.8	30.2±1.8	216.0±3.5	1023±19
-25	黄家营	7.12±0.59	63.4±0.4	19.4±0.9	284.2±4.6	1153±21
-26	沙河	6.59±0.52	27.6±0.4	21.9±0.4	96.1±1.5	668±16
-27	白龙	8.28±1.42	54.1±2.4	25.7±0.9	184.5±2.9	907±17
-28	文贯	13.44±1.00	52.9±0.0	32.8±0.2	141.5±2.3	971 ±18
~29	红茶	11.26±1.14	53.7±3.3	35.1±1.0	175.3±2.8	505土17
-30	高家岭	6.55±0.54	24.8±0.0	14.1±0.4	120.1±1.9	645±15
82 C-31	双溪	12.10±1.08	59.0±0.0	28.5±0.9	355.6±5.7	1167 <u>±</u> 22
-32	二里	5.55±0.00	21.1±0.0	9.2±0.5	118.0±1.9	682±14
-33	五里坝	8.17 <u>+</u> 0.74	23.2±0.4	14.5±0.2	114.5±2.3	984±19
-34	茅坪	11.45 <u>±</u> 1.66	62.6±0.0	29.9±1.2	242.2±3.9	1091±21
-35	五星	13.17±1.37	54.5 <u>+</u> 0.4	36.4 <u>+</u> 2.4	207.1±0.6	997 <u>±</u> 18
非加权	$\bar{x} \pm s$	9.1±2.7	50 ±12	27.2±6.9	145±62 (134.3×1.5)**	897±152
加权	$\bar{x}\pm s$	9.11±0.45	51.8±1.5	27.8±1.0	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	879±20

^{*} 表中 kg 指在 105℃下烘干之土壤质量 ** 带括号数值为几何均值和几何标准差

表 3 稻田土壤中 **Sr 和 ¹³⁷Cs 含量的实测值 (Bq·kg⁻¹)

样品号	采样地址	°°Sr	. 137 Cs
82A-3	东 风	0.75±0.09	3.00±0.09
82A-5	新民寺	7.59 <u>+</u> 2.76	7.15±0.95
82A-8	团 结	11.52 ± 3.39	2.82 ± 0.13
82A-10	貫 溪	19.13±4.37	3.84±1.06
82 A-12	杨河	5.10±2.26	4.84±0.09
82A-15	周家坪	8.23±2.87	7.23±2.38
\bar{X}	±s	8.7±6.2	4.8±2.0

表 4 A、B、C 三组的放射性水平及一致性 检验结果 (Bq·kg⁻¹)

分析项目		检验的统计量			
	$n_A = 18$	$n_B = 12$	C $n_G = 5$	F	x²
U	8.7±2.9	9.3 <u>+</u> 2.3	10.1±3.2	0.587	0.940
Th	52.7±7.5	48 <u>:±</u> 12	44±20	1.274	51.49
²²⁶ Ka	28.2±4.8	27.2 <u>+</u> 7.4	24 <u>+</u> 11	0.858	6.490
₩K	118 <u>+</u> 33	161±56	207±100	5.742	2.625
总β	867±96	905 ±20 0	984士185	0.502	7.760

判断界限: $F_{0.05} = 3.295 \ x_{0.01}^2 = 9.210$

我们将表 2 中 35 个样品的 U、Th、 20 Ra、 *0 K 的实 测值,都按 $<\bar{x}-3S$, $=\bar{x}\pm3S$, $>\bar{x}+3S$,分为三个水平组,并绘制了稻田

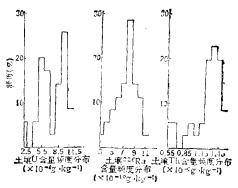


图 2 土壤放射频度分布(1)

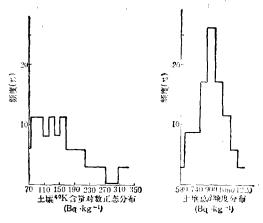


图 3 土壤放射频度分布(2)

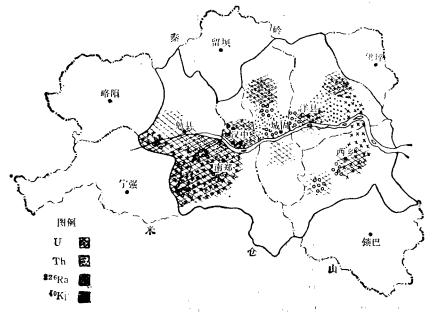


图 4 汉中地区稻田土壤放射性水平地理分布

表 5 总体参数 μ和 σ 的置信区间

		95%置信区间					
分析项目	⊼±s	μ		σ			
		LCL	UCL	LCL	UCL		
U	9.11±0.45	8.96	9.26	0.36	0.59		
Th	51.8±1.5	51.3	52.3	1.2	2.0		
226 Ra	27.8±1.0	27.4	28.1	0.8	1.3		
40K	128土7	126	130	6	9		
点度	879±20	872	886	16	26		

土壤, $>\bar{x}$ + 3S 的高水平组 U、Th、 26 Ra 和 40 K 的地理分布图 (图 4).

从图 4 看出,在研究的总体内,西部偏南、东南和汉江以北 U 含量较高; 北边 Th 含

量较高;²²⁶Ra含量较高的地方比较分散,基本上都在U、Th分布范围之内;⁴⁰K主要分布于西部偏南和东部。与文献**中大来放射性水平的地理分布相比较,可以看出,在本底水平条件下,放射性物质在稻田土壤和大米中的含量看不出有什么规律性的联系。

(五) 本实验结果与外地结果对照

我们比较了本实验与本实验室 Ge(Li)r-能谱分析的西安地区耕地土壤的放射水平^[2] 以及地球表层土壤天然放射性 核素 含量 范围^[3],结果见表 6. 由此可看出,汉中地区稻田土壤的放射性处于本底水平。

表 6 本实验结果与外地结果比较(Bq·kg-1)

地区	U	Тb	²²⁶ Ra	40K	总β	1 37 C8
本实验结果	9.11±0.45	51.8 <u>+</u> 1.5	27.8±1.0	128±7	8 79 ±20	4.8±2.0
西安地区耕地土填 Ge(Li)r-谱分析结果	43±13	53.6±3.0	36.3±3.3	688±33	1058±126	5.55±1.85
地球表层土壤含量范围	12.31-55.40	24.4-52.9	30.340.7	97.0419.5	-	_

小 结

1. 汉中地区稻田土壤的放射性水平的算术加数均值($Bq \cdot kg^{-1}$)为: $U=9.11\pm0.45$, $Th=51.8\pm1.5$, $^{26}Ra=27.8\pm1.0$, $^{40}K=128\pm7$,总 $\beta=879\pm20$, $^{90}Sr=8.7\pm6.2$, $^{157}Cs=4.8\pm2.0$ 。 该地区稻田土壤中的放射性含量在正常本底范围。

2. 总体参数 μ 和 σ 的95% 置信区间估值 (Bq·kg⁻¹), U: μ = 8.96—9.26, σ = 0.36—0.59; Th: μ = 51.3—52.3, σ = 1.2—2.0; ⁴⁴⁶Ra: μ = 27.4—28.1, σ = 0.8—1.3; ⁴⁶K: μ = 126—130, σ = 6—9; 总 β : μ = 872—886, σ = 16—26.

3. 汉中地区平原、丘陵和山地稻田土壤的放射性水平,当 $\alpha = 0.05$ 时,除 "K 有显著性差异外,U、Th、226Ra 和总 β 均无显著性差异。" "K 的差异可能是由于稻田施 K 肥

的不同而引起,

4. 稻田土壤放射性含量的频度分布,经正态性和对数正态性的W检验表明,当 $\alpha = 0.05$ 时,U、 26 Ra 和总 β 的放射性含量的频度均服从正态分布, 40 K 服从对数正态分布,而 Th 既不服从正态分布也不服从对数正态分布,

5. 汉中地区稻田土壤放射件水平的地理分布情况是: U在西部偏南、东部和汉江以北含量较高; Th 在北部含量较高; ²⁴⁰Ra 分布比较分散,但高含量的分布基本上与U、Th 是一致的; ⁴⁰K 在西部偏南和东部含量较高。

参 考 文 献

- [1] 高玉堂,环境监测常用统计方法,86页,原子**他出版** 社、1980.
- [3] 潘英杰,环境保护, 4,24(1985).