卷 考 文 献

[1] APHA, AWWA, WPCF, Standard Method for the Examination of Water and Wastewater, p. 518-534,13th ed., Published by APHA, AWWA, WPCF, 1971.

[2] 樊德方,农药残留量分析与检测,215-216页,上 海科学技术出版社,1982 年.

5-Br-DMPAP 光度法测定水中痕量铁 (III)*

丘星初 朱盈权

(江西省赣州地区环境科学研究所)(成都市82号信箱)

现有测定水中铁的方法中,经典的硫氰酸盐法、试亚铁灵法、邻菲罗林和向红邻菲罗林法是最为常用的,但灵敏度不高。本文研究了铁(III)与2-(5-溴-2-吡啶偶氮)-5-二甲氨基酚(简称 5-Br-DMPAP) 形成络合物的条件及其光度性质。发现在乙酸介质中显色,该法有良好的选择性,且灵敏度比上述方法高三倍多。应用于水中铁的测定获得了较满意的结果。

实验部分

一、仪器与试剂配制

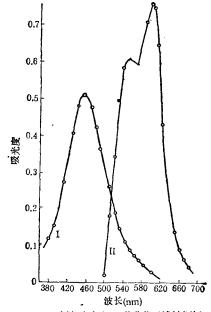
721 型分光光度计,1cm 比色皿。

标准铁溶液 100 µg/ml, 准确称取纯铁 丝(先用稀盐酸洗去表面氧化物后烘干)或金 属铁粉 0.100g, 加入 1:1 硝酸 10ml, 加热溶 解,冷却后移至 1000ml 容量瓶中, 并用水稀 释至刻度, 混匀。 用时按所需浓度 用水稀 释.

5-Br-DMPAP** 溶液 0.02% 的 95% 乙醇溶液.

其余试剂均为分析纯,按常规方法配制。

二、实验方法


取 10 μg 铁溶液于 25ml 容量瓶中,加入 3mol 乙酸 5ml, 95% 乙醇 2ml,混匀后加入 0.02% 5-Br-DMPAP 溶液 2ml,加水至刻

度,混匀。放置 10min 后,用1cm 比色皿于波长 600 纳米处,以试剂空白为参比,测定吸光度。

结果和讨论

一、吸收光谱曲线

按实验方法绘制吸收光谱曲线如图 1 所

I 试剂(水参比);Ⅱ络化物(试剂参比)

图 1 吸收曲线

I. 试剂(水参比); II. 络合物(试剂参比)

- * 鄢建平同志参加部分实验工作。
- ** 试剂由天津化学试剂研究所叶嘉渝同志合成。

示。试剂最大吸收位于 450nm。 Fe(III)-5-Br-DMPAP 络合物有两个吸收峰,分别位于 550 和 600nm 处。因用后一波长处测量,络合物的灵敏度高,且离试剂的最大吸收也远 ($\Delta\lambda=150$ nm),故以下实验均选用 600nm 作为测量波长。

二、酸度的影响

我们发现 Fe(III)-5-Br-DMPAP 络合物能在乙酸介质中显色,且乙酸浓度在很大范围内 (0.03—0.8 mol) 对吸收光度的影响很小(见图 2),考虑到有利于消除共存离子

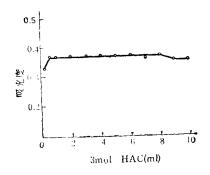


图 2 酸度的影响

的干扰,我们选用了3mol乙酸加入量为5ml,即溶液乙酸浓度为0.6mol.

三、5-Br-DMPAP 浓度的影响

试验表明,在25ml 显色液中,加入0.02%5-Br-DMPAP溶液1.5-4.0ml,吸光度达最大值恒定(见图3). 故选用加入量

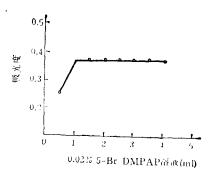


图 3 5-Br-DMPAP 浓度的影响

四、介质的影响

在乙醇介质中发色,有利于试剂和络合物的溶解并增加络合物的稳定性。实验结果表明(见图 4),95% 乙醇加入量 1—10ml 结果一致。故选用加入量为 2ml。

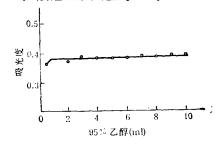


图 4 乙醇浓度的影响

五、络合物的组成

用连续变化法和摩尔比法测定络合物组成比均得一致结论:Fe(III):5-Br-DMPAP=

表 1	本法与	商子吸收	计法结里	的比较
-1X I	华杰马	T 72 H	1 7	******

样品编号	采样地点	样品名称	原子吸收法 (ppm)	本法 (ppm)	傷差 (ppm)	相对偏差 (%)
1	于都县孟口	河水	0.26	0.27	+0.01	3,85
2	兴国县长冈	河 水	0.19	0.20	+0.01	5,26
3	石城县红卫桥	河水	0.35	0.36	+0.01	2.86
4	爺 州市	鱼州水	0.80	0.82	+0.02	2.50

1:2.

六、遵守比尔定律的浓度范围和方法的 灵敏度

实验结果表明,用1cm 比色皿测定,铁

浓度介于 $0-20\mu g/25ml$ 范围内遵守比尔定律。 铁浓度与吸光度间的相关系数 r=0.9997。表观摩尔吸光系数 $\epsilon'_{000}=7.6\times10^{\circ}$ [L. $mol^{-1}\cdot cm^{-1}$]。

七、共存离子的影响

取 $10 \mu g$ 铁,按实验方法加入干扰离子测定吸光度,结果表明: 大量的 K^+ 、 Na^+ 、 NH_r^+ 、 NO_3^- 、 Cl^- 、 SO_4^{2-} 无影响。下列诸离子共存量(有*者为允许限量,以 μg 计)无干扰: Ca^{2+} 、 Mg^{2+} (各 2000); Ba^{2+} 、 Pb^{2+} 、 Mn^{2+} 、(各 1000); Si(IV) (500); Zn^{2+} 、 Cd^{2+} 、 Al^{3+*} 、 La^{3+} 、As(V)、Mo(VI) (各 100); Cu^{2+} , Ni^{2+} ,

Sn(IV), Cr(VI)* (各 10); Co^{2+*}(5); Ti (1V)*(2)。仅 Fe²⁺ 和 F⁻ 干扰测定。

八、样品分析和方法的准确度和精密度取过滤后的水样 10—50ml 于 50ml 烧杯中,在水浴上蒸发至近干时加人硝酸 1ml 及30% 双氧水 5 滴,继续蒸发至干。然后加入3mol 乙酸 5ml 溶解残渣,移入 25ml 容量瓶,按实验方法测定铁,结果如表 1.2.3 所示。

表 2	样	品回	收i	纶	结	果

样品编号	样品:来源	样品原含量 (μg)	加人铁量 (µg)	测得铁量 (μg)	回收率 %	
1		12.6	3	15.6	.00.0	
	河水		6	18.6	100.0	
			3	9.3	96.7	
2	塘水	6.4	6	12.3	98.3	
			9	15.2	97.8	
3		9.5	3	12.5	100.0	
	井 水		6	15.6	101.7	
			9	18.5	100.0	
4	自来水	5.2	3	8.5	103.3	
			6	11.2	100.0	
			9	14.2	100.0	

表 3 方法精密度考查

样品编号	样品来源	分析结果的个别值 X _i (ppm)	平均值 X	标准差 S	相对标准偏差 cv%
1	河水	1.2 1.2 1.2 1.2	1.2	0	0
	1,3 %	1.2 1.2 1.2			
2	塘水	0.13 0.12 0.13 0.12	0.127	0.0049	3.84
	45 小	0.13 0.13 0.13		0.0079	3.84
3	井水	0.19 0.19 0.19 0.19	0.190	0	0
		0.19 0.19 0.19			
4	自来水	0.47 0.47 0.47 0.46	0.0471	0.00069	1.47
		0.48 0.47 0.48			

由表 1 看出,本法测定结果与原子吸收 法结果基本一致.由表 2 可见,样品回收率的 平均值为 99.8%,平均值的标准差为 1.79.表 明本法的准确度满足分析要求。表 3 结果表明,多次重复测定的相对标准偏差在 3.84% 以内,说明方法的重现性良好。