學

文点水体的盐分都因主要来自冰碛垅和两侧 裸露山坡,该地区高寒低温,化学风化微弱, 且经过长期淋溶,含可溶盐分基本恒定,冰雪 融水矿化度极低,故当流量增大时,水体中的 盐分得以稀释,它的矿化度和总硬度就降低, 反之则升高.

五、小 结

通过上述讨论,可将乌鲁木齐河中上游 的水化学特征归结为下述几点:

 1. 从乌鲁木齐河源一号冰川至它的中游 英雄桥(水文点除外),水体的化学类型属重 碳酸盐型,而水文点上多为重碳酸盐、硫酸盐 型. 整个地段均属淡水、软水.

2. 由于补给水体的不同和自然地理等条

件上的差异使得乌鲁木齐河中上游的水体矿 化度和总硬度有着明显的空间变化规律;随 海拔高度的下降矿化度和总硬度随之增大; 矿化度和总硬度在河源区变化急剧,到中游 则比较缓慢.

3. 在一号冰川水文点上,由于气温的日 变和季节变化使得河水的流量发生相应的变 化.又由于流量的变化使得水体的矿化度和 总硬度发生相反的变化.

参考文献

- [1] 周昆叔等,冰川冻土,3卷增刊,97-105,1981.
- [2] 施雅风、苏珍,天山乌鲁木齐河冰川与水文研究, 83-87页,科学出版社,1965年.

天津市工业与民用燃煤烟尘成分特征的研究

戴树桂 朱 坦 曾幼生 傅学起 廖奕谋* (南开大学环境科学系)

一、引言

我国能源以燃煤为主.在天津这样一个 大城市,近年煤的年耗量在一千万吨以上.燃 煤过程中将有大量的颗粒物产生.尽管在锅 炉上安装了除尘设备,但由于管理和除尘设 备本身效率的原因,仍有大量烟尘排人大气. 民用炉灶则根本没有除尘设备.若按排放因 子为 2.0 × 10⁻² 计算,则天津市每年约有 20 万吨颗粒物排入大气.可见研究煤烟尘对大 气环境的影响是很有必要的.

国外对煤烟尘污染作了大量研究.目前 此类工作基本都是以某个火力发电厂所排煤 烟尘为对象,研究燃烧机制及燃烧过程中元 素的行为^[1,2,3],以探讨煤烟尘及其载带元素 对大气环境及人类健康的影响. 国内也见到 类似工作报道^[4].

为了确定煤烟尘(及其它排放源)对大气 颗粒物的污染贡献量,近年国际上兴起了称 为受体模型的颗粒物来源解析方法.作为该 模型的基础,要求掌握煤烟尘的元素组成特 征(成分谱¹⁵¹,source profile),而现有的研 究报道往往因下述原因而不具备适合于该模 型:(1)一个锅炉的研究结果不能代表其它 燃煤类型,特别在我国,除火力发电厂外,还 有大量的中小锅炉和居民炉灶,它们的用煤

^{*} 本系八五届毕业生冯效毅、霍高志参加部分实验工 作.

总量甚至超过火力发电厂;(2)现有报道(主要指国内资料)往往缺乏受体模型所重视的 元素(如 Si、Al、Ca 等)的数据.

有关基础数据资料的缺乏是我国开展大 气颗粒物来源研究的主要困难之一. 为此, 本文试图通过天津各类煤烟尘成分特征的研 究,以统计的观点提出符合我国煤源和燃煤 方式的、适用于源解析受体模型的煤烟尘成 分谱.

二、实验部分

1. 样品的采集与制备

天津市燃煤包括工业和民用两部分. 其

中工业燃煤使用的锅炉除了少量大锅炉以 外,大部分是中小锅炉.民用燃煤使用的是 小炉灶,主要燃料是煤球和蜂窝煤.根据上 述情况,我们把煤烟尘排放源分成四类:大 锅炉、中小锅炉、煤球炉和蜂窝煤炉.据调 查,天津市工业煤源基本上都来自山西阳泉、 大同等地,民用的煤球、蜂窝煤配料是全市统 一的.因此,采样点的地区分布并不影响样 品的代表性,但是我们仍然在全市区范围内 采样,共采集了各类煤烟尘样品 30 个,使样 品具备较好的代表性.采样情况见表 1.

煤烟尘排入大气后能在大气中长期悬浮 造成环境危害的主要是其中的小颗粒,特别

类别	样品数目	采样地点	锅炉吨位(t)/ 烟囱高度(m)	采样位置	日期
大型锅炉	3	第一发电厂		水磨除尘器前飞灰罐内(入口灰) 水磨除尘器后 (出口灰) 水磨除尘器淋下的煤灰(湿灰)	84.5.10
中小锅炉	11	市一中、胸科医院、职 业病院、利民食品厂等 八厂家	1-6/9-38	离心除尘器尘粒收集器中	85.3.19-20
煤球炉	7	南开区、红桥区、河西区		烟道上、中、下部	85.3.21-24
蜂窝煤炉	9	和平区、南开区、河西区		烟道上、中、下部	85.3.21-24

表1 各类煤烟尘采样清况

是直径小于 10μ 的粒子(飘尘).由此我们将 样品在 105℃ 下干燥后,过 60 目筛去掉大颗 粒. 再用巴柯离心分级仪取 14 号隔距片将 剩下部分分为粗细两部分^[5].其中细颗粒大 约为 12μ以下的粒子.取该样品作元素组成 分析.

2. 样品分析

取样品 100mg 与 0.7gLiBO₂ 于铂坩埚中 在 950℃下熔融 15min. 熔块用 4%HNO₃超 声振荡溶解^[6]. 定容后取出部分直接用高频 等离子体发射光谱 (ICP-AES) 法 测定 Si、 Al、Ti、V. 剩余溶液用火焰原子吸收法测 定 Ca、Mg、Fe、Mn、Zn. 另取 200mg 样 品用 HNO₃ 及少量 HClO₄ 于电热 板 上 消 化,消化完全后加 1ml 5% 抗坏血酸-硫脲混 合液,定容后分别用火焰原子吸收法测定Pb、 Cu、Ni,用氢化原子吸收法测 As. 再取 20mg 样品于聚四氟乙烯烧杯中,加4mlHF 和1mlHClO4,消化至冒白烟,冷却后加1ml 浓度为10mg/ml的Cs溶液,定容10ml用火 焰原子吸收法测 K,Na,用石墨炉法测 Cr. 大型锅炉煤烟尘样品是用 HNO3、HCl、HF、 HClO4 (5:1:2:1)及0.5g H3BO,在高压消 解弹内溶解后用原子吸收法测定的^[7] (Al、 Si、Ti 用笑气-乙炔焰、V用石墨炉法).

火焰原子吸收法测定时均用标准加入法 以消除可能的干扰.样品是分次分析的,故 方法有所不同,但每次分析都选用了基本相 似的地质部化探标准参考样 GSD-5 作质量 控制.标样测定的平均回收率除 As、Cr、Zn

• 20	•
------	---

表2 各 类 煤 烟 尘 元 素

元			;	大 型	锅	炉				中 小 锅	
14	யாகல	湿灰人			くロ灰		平均③			/	
系	шыде	全颗粒②	细	粗	细	粗	细	细/粗	相	≉(n	
Al	48.0	55.2	102	49.6	104	49.6	103	2.10	149±46	208 <u>±</u> 50	
As	0.033	0.022	0.036	0.0018	0.012	0.0018	0.024	6.67	0.011±0.009	0.033±0.006	
Ca	18.8	20.0	17.6	28.4	18.8	28.4	18.2	0.60	2.62±9.4	19.0±4.2	
Cr	0.042	0.040	0.051	0.050	0.215	0.050	0.133	4.3	0.024±0.012	0.072±0.010	
Cu	0.064	0.055	0.087	0.084	0.108	0.084	0.0975	1.29	0.054±0.014	0.147±0.080	
Fe	30.0	70.4	44.4	123	34.0	123	39.2	0.28	24.9±13.9	15.4 <u>+</u> 6.8	
ĸ	7.6	7.2	7.2	6.2	6.2	6.2	6.7	1.0	2.7 <u>+</u> 1.6	4.4±2.3	
Mg	2.2	2.6	2.6	2.8	1.5	2.8	2.05	0.54	2.7±1.3	2.6±1.6	
Mn	0.384	0.480	0.424	0.504	0.216	0.504	0.32	0.43	0.363 ± 0.112	0.290±0.058	
Na	1.52	0.88	1.04	0.64	0.80	0.64	0.92	1.25	1.6±0.8	7.3±4.2	
Ni	0.049	0.032	0.039	0.049	0.142	0.049	0.0905	2.90	0.020±0.007	0.041±0.008	
Pb	0.152	0.080	0.112	0.016	0.080	0.016	0.1196	5.0	0.016±0.010	0.150±0.050	
Si	152	142	160	138	134	138	147	0.97	152 <u>+</u> 38	182 <u>+</u> 38	
Ti	10.1	9.3	10.4	8.6	10.1	8.0	10.3	1.17	4.74±1.2	6.43 <u>±</u> 1.54	
v	0.098	0.102	0.108	0.095	0.094	0.095	0.101	0.99	0.104±0.037	0.114±0.042	
Zn	0.138	0.896	0.144	0.0576	0.0968	0.0576	0.121	1.68	0.248 ± 0.192	0.410±0.138	
	<u>1.95±1.79</u>										

①除比值外,单位均为 μg/mg 即 mg/τ."粗"、"细"分别表示粗、细颗粒."细/粗"表示元素在细颗粒与祖颗粒中含作为平均"细/粗".④中小锅炉、煤球炉、蜂窝煤炉分别为 11、7、9 对粗、细样品的分析结果,表示为"平均值土标准差".⑤

分别为 83.7%、72.6%、111.8%外,其余元素 均在 90%-110% 之间.分析仪器为澳大利 亚产 VT-AA6(作火焰法和氢化法)和美国 IL-VIDEO22(作石墨炉法)原子吸收分光光 度计及 Atomscan 2000型 ICP 发射光谱仪.

三、结果与讨论

各类煤烟尘分析结果见表 2. 在以下讨 论中,工业燃煤泛指所有锅炉(包括居民供热 锅炉等),民用燃煤仅指家庭炉灶.

1. 关于样品的采集与制备问题

作为大气颗粒物污染方面的研究,这里 所采集的煤烟尘应该是:(1)与大气环境已 达成平衡;(2)能在大气中较长时间悬浮的小颗粒.在锅炉烟囱的高温环境中,有的挥发 性元素(如 As)可能尚未凝聚,当排出烟囱 后才转化到颗粒物上.即环境所接受的煤烟 尘并不一定与烟囱里采来的煤烟尘完全一 样.但是要在烟囱外采集又会受到其它非煤 烟尘颗粒物的干扰.稀释采样法⁽⁸⁾和"风迹 分析"⁽⁹⁾可能有助于解决该困难,从而得到更 准确的结果.目前在国内容易实现的还是在 烟道里采样,而且只能在除尘器或烟道壁上 收集沉积的烟尘.因为若用烟道测尘设备采 样,由于其滤料为玻璃纤维等材质,无法测定 Si、Al等元素.对颗粒物来源解析,这两种

细	成	分	析	结	里①
20.	PR	//	- 1VI	20	~ –

炉④	/	转球炉④		蜂窝煤炉④			
 细/粗	粗细		细/粗	粗	细	细/粗	
1.40	70.5±14.7	77.2±26.2	1.10	77.1±17.8	72.4±17.2	0.94	
3.0	0.038±0.013	0.096±0.040	2.53	0.038±0.015	0.150±0.074	3.95	
0.72	29.0±4.0	25.5 <u>+</u> 8.0	0.88	78.7±12.2	72.2±15.7	0.92	
3.0	0.030±0.015	0.054±0.023	1.8	0.045±0.030	0.058±0.011	1.29	
2.72	0.057±0.018	0.205±0.186	3.60	0.071±0.012	0.102±0.031	1.44	
0.62	28.6±19.8	19.7±7.1	0.69	26.8±0.9	24.0±3.1	0.90	
1.63	7.7±1.9	7.8±4.4	1.01	11.6±2.9	12.7±2.1	1.09	
0.96	5.2±1.1	5.9 <u>+</u> 2.9	1.13	11.8±4.8	10.2±3.6	0.86	
0.82	0.401±0.103	0.383±0.147	0.96	0.479±0.059	0.428±0.091	0.89	
4.56	7.4 <u>+</u> 1.5	6.3±2.2	0.85	12.8±9.0	8.6±3.2	0.67	
2.05	0.013±0.007	0.039±0.017	3.0	0.021±0.004	0.042±0.007	2.0	
9.38	1.57 <u>±</u> 1.04	4.14.13.68	2.63	1.08±0.27	2.34 <u>+</u> 1.08	2.17	
1.20	101 <u>±</u> 18	100±30	0.99	136±36	106±15	0.78	
1.36	2.54±0.45	4.41±1.72	1.74	3.02±0.46	4.91±1.31	1.63	
1.10	0.108	0.112	1.04	0.067±0.021	0.138±0.045	2.06	
1.65	2.68±1.21	3.54±2.68	1.32	2.80±1.75	3.14±2.45	1.12	
2.26±2.115		1.	58±0.866			1.42±0.805	

量的比值. ②未经离心分级样品. ③出口灰、湿灰缺粗颗粒数据,这里用入口灰的粗颗粒作为粗颗粒平均,用其"细/粗"值 "细/粗"的"均值土标准差".

元素是很重要的. 除了采样方法有待发展 外,为后续的分析将样品按粒度分离也缺乏 完善的方法. 由于分割点应为10µ,不能用 过筛的办法. 有些方法又可能导致样品化学 成分在总体或不同粒径之间发生变化.

本文采用巴 柯 离心分级仪¹³¹,取 14 号 隔距片,其分割点的空气动力学 直 径 d_a 为 17.7 μ . 尘粒几何直径 $d = -\frac{d_a}{\sqrt{r}}$,r为尘粒 比重,对煤灰约为 2.1.由此求得 $d = 12\mu$. 即分离出大于 12 μ 的为粗颗粒,另一部分为 细颗粒.我们关心的是细颗粒,但这种方法 存在的问题是部分粒径极小的粒子可能被吹 失".

2. 元素的粒径分布特征

由于烟道中细小颗粒沉积的比例较小, 加之分离时微粒可能的吹失,用上述方法所 得的粗细颗粒质量比不能作为准确的煤烟尘 质量粒径分布.但是就分出的粒子而言,其 元素分布特征还是有肯定意义的.从表2中 各元素在粗细颗粒中的含量比(表中"细/ 粗")可见:

(1)两类工业燃煤过程都使得元素在粗 细颗粒的分布上有较大分化. 16 种元素的 "细/粗"平均比值远离1,分别为1.95 和 2.26.而且离散度大(变异系数分别为91.6%

学

和 93.1%). 而两种民用燃煤"细/粗"平均比 值约为 1.5, 且离散度较小(变异系数约 55%). 表明元素在粒度上分布趋向均匀.这 是工业与民用燃煤烟尘的显著区别之一.

(2) 从各元素的情况看,As、Pb、Ni、Cr 明显富集于细颗粒.这些元素熔点低,燃烧 时可能被液化或气化.在烟道中或排出烟道 后再凝结在颗粒表面(小颗粒比表面大,故出 现富集). 而烟道温度是影响凝结的主要因 素.As、Pb 是这类元素的典型,它们在细颗 粒上的富集表现为工业燃煤强于民用燃煤, 而在煤烟尘中的含量却是民用远高于工业。 这里我们得出结论:炉温越高,低熔点元素 的相分化越剧烈,在小颗粒上的富集也就越 显著;烟道温度越高,低熔点元素越不易凝结 而可能在排出烟道后凝结,反之则凝结在烟 道内.由此,工业燃煤的高炉温、高烟道温度 及民用燃煤的低炉温、低烟道温度是引起上 述结果的主要原因.

(3) 其它元素在这样的粗细颗粒间比值 接近1,没有趋势性的不均匀分配(个别例外 不具趋势性,也尚无满意解析).

可以推论,若有更完善的采样方法和更 精细的小粒径范围多级分级,低熔点元素在 小颗粒的富集可能会更强烈,其它元素也可 能会出现不均匀分配.

3. 成分谱

本文的主要目的是为大气颗粒物的源解 析受体模型提供煤烟尘的成分谱资料.受体 模型只从战略角度给出各类(而不是一个个 具体的)排放源的污染贡献量.相应的成分 谱是同类排放源成分分析结果的统计平均. 因此表2中的数据还需按此要求进一步归纳 整理.为了与飘尘相应,我们主要考虑上述 分级中的细颗粒.粗颗粒数据资料可与降尘 相应,需要时可经同样处理得到.

.我国(特别是北方城市)在燃烧方式上与 发达国家有所不同.除了锅炉外,还有为数 众多的居民家庭炉灶. 据天津市 1983 年的 统计,采暖期市区燃煤总量中 26.66% 为居 民用煤.在全年中也占 23.67%.而且居民 炉灶的排放高度很低,烟尘中小颗粒比 例 较 大,可能造成明显的环境影响.从上述讨论 及分析结果中也可见工业和民用燃煤排尘在 特征上有一定差异.为了使煤烟尘污染控制 目标更明确,环境和经济效益更高,无疑是希 望在源解析中分别给出"工业煤烟尘"和"民 用煤烟尘"的污染贡献而不是笼统的"煤烟 尘"贡献.据此,我们分别按下式求得工业和 民用燃煤煤烟尘的成分谱(表 3).

 $C_{i\perp\underline{v}} = \frac{1}{2} \left(C_{i\pm\underline{v}_{\mathrm{K}}\underline{v}}} + C_{i\pm\underline{v}_{\mathrm{K}}\underline{v}}} \right)$

*C*_{*i*R^m} = 0.7 × *C*_{*i*#**8**#9} + 0.3 × *C*_{*i*#**8**#9} 式中 *C*_{*i*} 代表煤烟尘中元素 *i* 的含量. 调查 表明,天冿市民用煤中蜂窝煤约占 70%,煤 球约占 30%,故取其加权平均.由于大型与 中小锅炉缺乏统一资料,这里取其平均.

若需考虑总的煤烟尘,可将工业与民用 燃煤烟尘的成分加权平均.根据上述天津市 区民用煤比例,这里已将工业和民用分别以 0.75 和 0.25 的加权值平均合为一个总燃煤 的烟尘成分谱列于表 3 中.

表 3 中同时列出了美国标准局的两个燃 煤飞灰标样 NBS SRM 1633 和 1633a 的数 据¹¹⁰. 该标样取自工业锅炉(火电厂). 与我 国工业煤烟尘的元素组成大体相符.但与我 国民用炉灶煤烟尘的元素组成有较大差别。 除 Al、Fe、Si 等元素有较明显的差别外,我 国民用炉灶煤烟尘中 Pb、Zn 含量异常高. 为此我们**特意对蜂窝煤、煤球**及其制作原料 中的 Pb、Zn 进行了分析. 结果(见表 4) 并 无异常. 从两个砖烟道中采得样品分析, 其 Pb、Zn 也与表 3 中民用燃煤烟尘的数值相 当.这就排除了一般民用金属烟道沾污的可 能. 结合前面的讨论, 可以认为是烟道温度 较低且无鼓风设施使之在其中凝结造成积累 所致. 若该推断成立,则实际排人大气的 Pb、Za 就并不高. 工业煤烟尘中 As 的含

表3 煤烟尘成分谱 (单位: mg/g)

元	工业燃煤	民用燃煤		NBS SRM 1633	NBS SRM 1633a
Al	156	73.8	135	125±10	140
A۶	0.029	0.134	0.055	0.061 ± 0.005	0.145±0.015
Ca	18.6	58.1	28.5	46土4	11.1 ± 0.1
Cr	0.103	0.057	0.092	0.129 ± 0.011	0.196 ± 0.006
Cu	0.122	0.133	0.125	0.127 ± 0.008	0.118 ± 0.003
Fe	27.3	22.7	26.2	62±4	94.0 ± 1.0
К	5.55	11.2	6.96	17.0±0.9	18.8±0.6
Mg	2.33	8.9	3.97	16±3	4.55±0.1
Мл	0.308	0.414	0.335	0.492±0.024	0.190
Na	4.11	7.9	5.05	3.20±0.34	1.70±0.10
Ni	0.066	0.041	0.060	0.098±0.011	0.127 ± 0.004
Pb	0.123	2.88	0.812	0.072±0.005	0.0724±0.0004
Si	165	104	124	202±25	228 ± 8
Ti	8.37	4.8	7.48	7.20±0.72	8.00
v	0.108	0.130	0.114	0.216±0.018	0.30
Zn	0.266	3.26	1.01	0.213±0.013	0.220 ± 0.010

量很低则正与此相反.这些问题的直接证实 及解决恐怕要靠应用前面提到的新的采样技 术和研究方法.在未获得进一步的研究成果 之前,建议使用这几个数据时加以修正^[11].

表4 蜂窝煤、煤球及其原料中Pb、Zn的含量(mg/g)

元素	煤球	蜂窝煤	白灰	黄土	京西 甲煤	京西 乙 煤	阳泉 煤
Pb	0.029	0.044	0.038	0.025	0.074	0.032	0.031
Zn	0.042	0.033	0.009	0. 0 7 2	0.070	0.025	0.050

尽管工业与民用燃煤烟尘的成分有一定 差异,但表3中它们的成分谱之间的相关系 数仍然较高,达0.916.这对受体模型的解析 是不利的,会因"多元共线"问题而影响解析 的准确度.要提高模型的分辨力,更准确地 区分工业与民用燃煤烟尘,还有待更深入的 研究.如研究其物相、显微形态及更多的化 学组分和更精细的粒度分布等特征,广泛地 寻求它们之间的不相关、不相似因素.建立 更完善的、广义的成分谱. 致谢 南开大学测试计算中心马锦秋等 同志用 ICP-AES 法为部分样品测定了 Si、 Al、Ti、V. 在此致谢.

参考文献

- [1] Coles, D. G. et al., Environ. Sci. Technol., 13(4), 455 (1979).
- [2] Smith, R. D., Atmos. Environ. 13(5), 607 (1979).
- [3] Ondov, J. M. et al., Environ. Sci. Technol., 13(8), 946 (1979).
- [4] 杨绍晋等,环境化学,2(2),32(1983).
- [5] 中国医学科学院卫生研究所卫生防护室,烟气测试 技术,人民卫生出版社,北京,1982.
- [6] Ingamells, C. O., Anal. Chim. Acta., 52, 323 (1970).
- [7] Aglmian, H. and Chau, A. S. Y., Anal. Chim. Acta, 80. 61(1975).
- [8] Heinsohn, R. J. et al., Environ. Sci. Technol., 14, 1205 (1980).
- [9] Gordon, G. E., et al., Atmos. Environ., 18, 1567 (1984).
- [10] Gladney, E. S., Anal. Chim. Acta, 118(2), 385 (1980).
- [11] 戴树桂等,"天津市区采暖期飘尘来源的解析",中 国环境科学,6(4),24(1986),