北京市汽车污染(CO)模式研究

徐锦航 吴 波 李中和 (北京工业大学)

我国近几年各大城市的汽车保有量猛增,北京市1975—1983年平均年增11.1%,1984年增长20.4%,1985年一季度净增18446辆,年增率可达41.7%。按国标GB3842-83的要求抽查,1984年北京市在用国产车的不合格率,CO达34.0%、HC达32.3%;进口车的CO超标率46.0%、HC超标率51.0%。1986年3月北京市抽查上牌照的新车,不合格率36.3%。1984年2月检查北京市67条街道的空气质量,有22%的人行道和73%的路中心空气质量,有22%的人行道和73%的路中心空气中CO浓度超过我国环境质量三级标准;55%人行道和94%路中心空气超过二级标准。因此,控制汽车污染已成为城市大气污染控制的一个重要方面。

国外在汽车污染模式方面做过不少工作¹¹⁻⁶¹,主要有二大类:一类是由简单的箱状模式表示扩散,以美国 SRI(Stanford Research Institute)的工作¹¹¹为代表,是用经验的扩散法则求得浓度分布,方法较简单,所得数据颇有价值,但理论根据不足,作为模式尚不够全面。另一类是日本机械学会的 APPS (Air Pollution Prediction System)¹²¹,是用差分法计算扩散方程,所以不仅能计算高楼谷间的CO浓度,而且对于广域的污染,包括光化学反应也能处理,但不能考虑建筑物的形状,该工作的环境污染测定数据也不够充分。上述两种方法所得的计算值和实测数据对比,也难于决定这两类方法的优劣。

我国的城市建筑、街道布置、气候条件、

汽车保有量、汽车构成、运行工况、排污情况 及交通管理制度等都不同于工业发达国家, 需建立一个符合国情的汽车污染模式,供汽车污染的评价和预测之用.

一、有关数据的监测和收集

1. 道路情况

北京市区面积 346km²。 道路系统似棋盘,放射状和条状相结合。道路间距一般在

表 1 北京市道路分类

街道类别	1 类—— 主干线	II 类—— 次干线	III 类—— 旧街道和支线
红线距离 (m)	70100	40 -60	20 30
机动车道数	68	4	2
两侧建筑物	10 层以上	46 12	12层但密集
路间绿化带	袹	有	芜

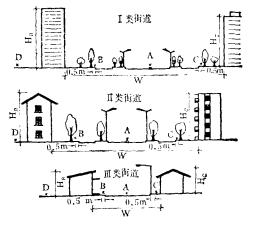


图 1 北京市街道分类情况及采样点分布 A, B, C, D, E, F, H 为采样点

600m 左右,三环路内路长 340km,道路面积率 6.85%,道路可分为三类(见表 1),其断面图及采样点分布见图 1。

2. 流动污染源情况

北京市 1975—1983 年汽车保有量的年平均增长率 11.1%, 1984 年增长率 20.4%, 1985 年增长率 41.7%. 我们把街道上行驶的机动车分成四大类: 大货车、大客车、小型车和摩托车, 其相对比例分别为 40%、6%、35% 和 19%.

3. 污染物浓度监测

1982年5月,1983年2月、5月、8月,选北京市19个典型街道,在同一断面上各位置(图1)布点,进行同步监测,共得4802个CO浓度数据。经分析发现,街道空气中CO浓度有如下规律:(1)与汽车流强度有正相关线性关系,路中心最明显;(2)沿水平方向,随扩散距离增加而迅速下降;(3)沿垂直方向变化极小;(4)明显地随风速加大而减少;(5)在楼房高度不大,红线距离较宽时,风向和楼高的影响不明显。

4. 气象数据

二、汽车污染模式化

用数学公式来抽象描述实体系统某一方面的属性,即数学模式,对模型的要求,首先是现实性,在此基础上达到简洁性,最后尽可

能满足适应性。根据这些原则,我们把影响汽车污染程度的主要影响因素作为模式的变量,根据它们之间的关系,设计一个初始模式的结构,然后通过模式结构的识别和参数估计来标定模式,最后用独立的监测数据进行验证,确认计算值和实测值的相关系数高度显著,模式才正式成立。建立汽车污染模式的步骤见图 2.

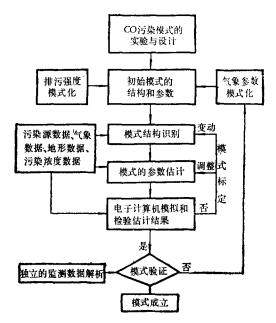


图 2 建立模型的步骤框图

1. 模式结构

根据以往实测结果,为简化起见,假定街道空气中 CO 浓度 [c] 是由局地固定污染源排放的背景浓度 $[c_D]$ 和汽车排放的浓度 $[\Delta c]$ 累加之和,即

$$[c] = [c_D] + [\Delta c](mg/m^3)$$
 (1)

由大气湍流扩散的一般原理和实验结果分析得出: $[\Delta c]$ 主要受车流排污强度 $Q(mg/m \cdot s)$ 、街道附近平均风速 $u_s(m/s)$ 和混合体厚度 z(m) 的影响。 因此,根据我国实际情况,参阅国外文献,设计了我国汽车污染的初始模式,即:

$$[\Delta c] = \frac{Q}{u_s \cdot z} (mg/m^3) \qquad (2)$$

考虑我国的汽车是复合污染源,所以用 下式表示:

$$Q = \sum_{i=1}^{n} N_i E_i / 3600 (\text{mg/m} \cdot \text{s})$$
 (3)

其中, N_i 是某类车的车流强度(辆/h); E_i 是某类车单台CO排放量(g/km·辆); n 是汽车分类数.

考虑汽车行驶时引起的空气流动, us 取值为:

$$u_S = u_D + K_1(m/s)$$
 (4)

但背景点的平均风速 U_D 需要实测,利用已说到的线性关系,让当地观象台的风速数据 U_R 直接进入模式,即:

$$U_s = (A + BU_B) + K_1(m/s)$$
 (5)

在短距离时,z与污染物传播距离成正比,并考虑到汽车的运动把 CO 混合到一个可以与车辆大小相比较的初始尺度 K_2 ,则可认为:

$$z = K_3(L + K_2) = K_3(\sqrt{x^2 + y^2} + K_2)$$
(6)

其中,x、y分别为污染源中心到监测点的水平距离和垂直距离(m).

综上所述,汽车污染的初始模式为:

$$[\Delta c] = \frac{K \sum_{i=1}^{\pi} (N_i E_i / 3600)}{[(A + BU_B) + K_1][\sqrt{x^2 + y^2} + K_2]} \times (mg/m^3)$$
(7)

2. 参数估计

街道空气采样点设在呼吸带高度, y 是 采样点高度与汽车排污管离地高度之差. 为 简化起见,取 y=1.5(m). 再根据北京市汽车情况,取 $K_2=4$. 然后把 527 组气象数据 和 500 组 CO 浓度数据及相应的 N_i 和 E_i 依 次输入微处理机. 用最小二乘估计法求得北京市街道汽车污染模式参数估计量. 最后进行相关系数检验. 检验合格,模式标定完毕. 图 3 为参数估计程序框图. 参数估计结果见表 2,取 $K_2=4$.

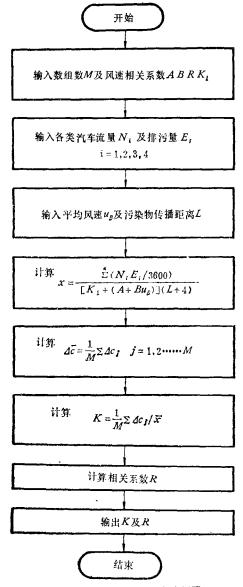
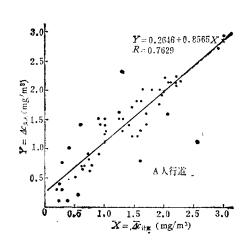


图 3 K值的参数估算程序框图


3. 模式验证

用未参加模式建立过程的、独立的 63 组 目平均实测数据,分别代人已标定过的模式, 并把计算值与实测值进行对比. 发现各类型 街道对比,或全部街道总对比,其监测值和计 算值的相关系数都是高度显著的(图 4). 对 人行道:

$$[\Delta c_{\pm \%}] = 0.2646 + 0.8565[\Delta c_{\pm \%}],$$

 $R = 0.7629$,大于 $R_{63-2}^{0.01} = 0.325$;

	街道类型		I	类			II	类			Ш	-	
采样时 间和地点	\$数及 估计量	A	В	К	K ₁	A	В	K	K,	А	В	K	K,
采暖期(二月)	人行道 路中心	0.29	0.26	3.21 9.58	0.8	0.44	0.22	2.14	0.5	0.62	0.12	1.94	0.3
非采暖期(五月)		0.45	0.32	1.51	0.8	0.35	0.18	1.68	0.5	0.14	0.17	1.75	0.3

表 2 北京街道汽车污染模式参数估计量

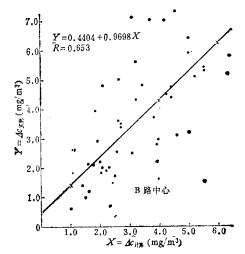


图 4 模式计算结果与实测结果相关分析

对路中心:

[Δc_{*} 期] = 0.4404 + 0.9698[Δc_{*} н $_{*}$], 其 R = 0.653,大于 $R_{42-2}^{0.01} = 0.393$ 。 说明上述模式成立,可以应用。

三、汽车污染模式的应用

上述汽车污染模式,结构比较简单,物理

概念明确,可以利用它进行街道空气一氧化碳污染的评价和预测。为此,在1984年又组织第三次大规模的测试、调查工作,目的是取得模拟计算所必要的数据,以便汽车污染模式在较大的城市范围内进行应用。

1.1984 年北京市主要街道有关数据分析

表 3 近两年车流强度和平均车速对照

街 道 类 型			I 类				II 类					III 🏌				
车 型	分 类*	A	В	С	D	Σ	A	В	С	D	Σ	Α	В	С	D	Σ
平均车流强度 (辆/h)	1982.5 1983.2 1984.4	262 294 367	206	570	282 296 105	1298 1367 1130	291	141 121 95	1	100 113 89	720 840 771	124 134 174	158	233 312 242	107 109 82	616 713 602
平均车速 (km/h)	1982.5 1983.2 1984.4	36 33 36	30 33 32	48 46 44	37 38 37		34 34 35	32 32 31	44 43 48	36 35 36		36 31 33	36 27 25	41 33 35	31 30 31	

^{*} A卡车, B 大客车, C 小汽车, D摩托车.

在北京市三环路内(包括三环路)选择了67条街道,测试了各类汽车的车流强度、平均行驶车速,街道宽度(断面情况)及两侧楼房高度等。同时记录了北京观象台测试的风速、风向数据。测试结果表明:北京街道上的车流强度和平均行驶车速,在1982年5月至1984年4月这二年间没有大的变化(表3)。

由于采暖季节污染较重^[3], 故取 2 月份 作为研究对象.根据北京气象台资料,1984 年 2 月份 7:00—18:00,以西北风为主导风向,月平均风速为 2.8(m/s),风速频率示于 表 4.

2.1984年2月北京街道汽车污染模拟计算.

用 1984 年 2 月份相应的各参数 及 测试

表 4 1984年2月份7:00-18:00风速频率

风速 (m/s)	00.5	0.6-1.7	1.8-3.3	3.4-5.2	5.37.4	7.5-9.8
频率(%)	8.3	24.4	31.3	17.2	14.8	4.0

所得变量代人式 7,即可计算出这 67条街 道空气中,因汽车排污 所 带来 的 CO 浓度 $[\Delta c]_{AFM}$ 和 $[\Delta c]_{RFM}$ 。

根据以往监测数据得到的北京街道上汽车污染占总污染的百分率,假定近二年[Δc]/[c] 的比值(表 5)未变,则可继续计算出北

表 5 北京街道上汽车污染占总污染的比例*(%)

地	点		ÁT.	道	路中心					
街道类型			11	111	I	11	ш			
[\(\rho \c \)]/[c]	非采暖期	17.1	25.7	43.6	59.2	53.6	64.5			
(%)	采 暖 期	32.4	20.1	30.0	59.2	47.4	53 .6			

* 1982 年 2 月- 1984 年 2 月数据平均值

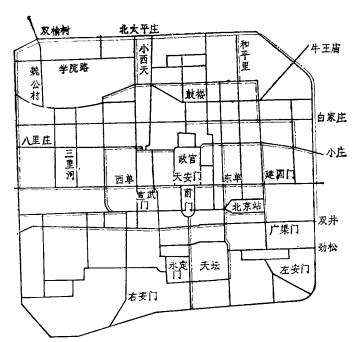


图 5 北京市街道人行道空气 CO 浓度[c]超标图 (1984 年 2 月)

====[c]>6(mg/m³)

= $-4 < [c] \le 6 (mg/m^3)$

 $\frac{1}{2} - \left[c\right] \leq 4 \left(\frac{mg}{m^3}\right)$

京市各街道空气中总的 CO 浓度. 将计算结果同我国大气环境质量标准(GB3095-82)进行对照, 画出 CO 污染浓度分布图(图 5、图6)

3. 模拟计算结果分析

从图 5 可以看出:不同地区的街道,由于车流强度和车种类比例的不同,街道空气受污染的程度有明显的差异.古皇城以内,以III 类旧街道为主,虽然商业集中,街道狭小,车速较慢,但由于白天限制卡车进入,车流强度较小,其空气受污染相对较轻. 二环路及其周围道路,虽然街道较宽,但路旁建筑物较高,不利于污染物扩散,所以空气中 CO 浓度超过三级标准者已达 41.7%. 三环路及周围道路,路面宽阔,高层建筑尚稀疏,周围还有不少农田,污染物易于扩散,所以虽然车流强度较大,但空气污染程度比二环路污染轻.

路中心空气受污染的规律(图略),与人 行道相似.由于更直接地受到汽车的影响,所

表 6 北京市 1984 年 2 月一氧化碳浓度 [CO] 超标的街道

街	道 类 别	I	II	III	总和
人行道 超标率(%)	[CO] 超过三级标准者 [CO] 超过二级标准者		43 71	7 43	22 55
路中心超标率(%)	[CO] 超过三级标准者 [CO] 超过二级标准者		36 79	68 96	73 94

以规律更为明显,污染也更重.

北京市街道空气一氧化碳浓度超标率示于表 6.模拟计算结果表明,北京市街道空气已明显受到污染,应及早从城市规划、道路建设、汽车排污法规、交通管理等方面采取综合措施,加以控制和设法改善.

四、小结和讨论

- 1. 经验证,北京市汽车污染模式成立,可以应用.
- 2. 如国内别的城市需要使用此模式,应根据当地情况,重新估计参数,并进行验证. 国内城市道路特点和汽车运行情况有一定相似性,估计模式结构不会发生大变化,待其他城市应用后证实.
- 3. 上述模式只反映汽车行驶时的污染情况,对交叉路口的污染模式,需另行研究.

参考 文献

- [1] Johnson, W.B. et al., Journal of Air Pollution Control Association, 23(6),490-498(1973).
- [2] 近藤次郎,大気污染——现象の解析とモテル化, 200-292,コロナ社出版,东京(1975).
- [5] Rodden, J. B. et al., Journal of the Air Pollution Control Association, 132(12), 1226-1228(1982).
- [4] Witz, S. et al., June, 23(6), 643-644(1982).
- [5] Nelson, P. F. et al., Atmospheric Environment, 17(3), 439-449(1983).
- [6] 太田正雄,空気清净,19(13),1-30(1981)。

某些植物 HF 伤害阈值的研究

唐述虞 陈树元 王嘉熙

(江苏省植物研究所)

研究大气 HF 对绿化植物、农作物的伤害阈值,对于正确选择绿化树种,合理进行防污绿化,制定大气环境质量基准以及对农作物采取正确的保护措施等,具有极其重要的意义。

伤害阈值又称伤害临界剂量,即使植物叶片出现最初伤害症状(一般以5%叶片受害面积为标准)的污染物浓度和接触时间.

国外自六十年代以来即进行了较多的试 验以确定植物的伤害阈值,而我国这方面工