# **科研报告**

## 用主成份分析研究土壤中重金属含量与母质的关系

唐诵六

(中国科学院南京土壤研究所)

土壤中砷、汞、铅、铬、镉、铜、锌、钴、镍、 锰等重金属元素,由于它们对生物和人体的 潜在毒性, 所以在环境保护工作中, 它们经 常是必要的监测项目。 一般认为,这些元素 在土壤中的背景值,主要受土壤类型的支配。 然而,很多资料证明,这些微量重金属与土壤 中的常量元素硅、铁、铝等不同,它们很可能 不决定于现行的土壤分类, 而在更大程度上 受母质类型[1,2]、颗粒机械组成[3] 等因素的制 约。 在一个工作地区,找出支配这些重金属 元素分布的主要因素是十分必要的, 因为这 不仅有理论意义,还可以指导制订合理的工 作方案诸如布点采样、统计、成图等, 使工 作量减少到最低程度并使实验结果更反映实 际。本文目的是应用主成分分析法探讨影响 不同十类、不同母质十壤中重金属元素含量 分布的主导因素。

### 土壤样品和元素测定方法

35 个土壤样品采自南京郊区。它们都是地面被复度大、剖面发育较好的土壤。 按土类有灰潮土、黄褐土和黄棕壤三大类。 其中,灰潮土的母质为长江近代冲积物;黄褐土的母质为第四纪沉积的下蜀系粘土;黄棕壤是低山、丘陵上分布的微酸性土壤,其母质包括各种岩性不同的岩石,计有石灰岩、砂岩、页岩、花岗岩、玄武岩、辉长岩和橄榄辉长岩等。 土壤过 100 目筛后用下述方法测定九种元素的含量: 砷用银盐比色法,铬经氟化氢、

硫酸消解后用火焰原子吸收法测定,铅、铜、锌、钴、镍和锰用王水、高氯酸消解后再用火焰原子吸收法测定、汞用冷原子吸收法测定。

#### 主成份分析

主成份分析,又称主组元分析,它是多元统计方法的一种。用主成份分析可以从大量样品、多个变量的原始观测数据中找出主要的决定变量大小的因素。它常被用来研究和解释地质现象。近年来,在土壤学的研究中,例如,水稻土成因分类<sup>[4]</sup>,红壤的属性分类<sup>[5]</sup>、土壤的波谱反射特性研究中<sup>[6]</sup>,主成份分析也得到了应用。

主成份分析的计算步骤是,首先根据样 品的各变量测定值求出变量的 相关系数矩 阵, 它是一个实对称矩阵, 接着用雅可比法 或克雷洛夫法(本文用雅可比法)求出该矩阵 的特征值和特征向量。特征值的数目和变量 数相等,每一特征值的特征向量数也与变量 数相等。然后根据特征值的大小及其贡献率 选取主成份。 一般使累计贡献率达 到80% 即可, 为了使主成份分析的结果能解释研究 对象的问题, 尚须进一步建立主成份方程 式。 将各样品的测定值代入方程式,可得出 各样品的主成份值,并在图上标出位置。 这 样,根据各样品的位置,便可将样品分类,进 而讨论研究对象受何种因素所支配。主成份 分析的详细原理及计算步骤,已在有关的文 献中详细介绍过[4,7]。本文将用实例简单描述

| 编号 | 田间号        | 土壤       | 母 岩    | As   | Hg    | Cr  | Pb   | Cu   | Zn   | Со   | Ni   | Mn          |
|----|------------|----------|--------|------|-------|-----|------|------|------|------|------|-------------|
| 1  | N17        | 灰潮土      | 长江冲积物  | 11.8 | 0.090 | 60  | 22.6 | 42.5 | 87.5 | 22.4 | 57.0 | 644         |
| 2  | N19        |          |        | 14.7 | 0.118 | 83  | 31.2 | 48.5 | 98.7 | 23.9 | 60.4 | 73 <b>2</b> |
| 3  | N21        |          |        | 10.4 | 0.098 | 88  | 35.0 | 47.0 | 114  | 24.8 | 52.0 | 341         |
| 4  | N5         | <br> 黄刚土 | 下蜀黄土   | 7.3  | 0.026 | 71  | 16.2 | 26.6 | 68.6 | 17.6 | 32.0 | 594         |
| 5  | N12        |          |        | 12.5 | 0.025 | 71  | 24.2 | 31.1 | 61.9 | 21.6 | 44.3 | 680         |
| 6  | N16        |          |        | 9.4  | 0.025 | 60  | 14.9 | 25.8 | 58.8 | 19.1 | 34.4 | 555         |
| 7  | N 18       |          |        | 9.7  | 0.040 | 45  | 14.5 | 31.6 | 74.3 | 19.5 | 51.0 | 548         |
| 8  | N 20       |          |        | 9.9  | 0.045 | 60  | 17.6 | 39.3 | 77.5 | 18.1 | 49.7 | 517         |
| 9  | N4         | 黄棕壤      | 崙山灰岩   | 202  | 1.243 | 44  | 125  | 37.6 | 244  | 28.2 | 38.9 | 911         |
| 10 | N13        |          | 青龙灰岩   | 24.2 | 0.127 | 47  | 53.5 | 44.1 | 101  | 22.7 | 58.0 | 1391        |
| 11 | N35        | }        |        | 16.9 | 0.099 | 59  | 33.8 | 38.0 | 79.9 | 16.5 | 32.4 | 1081        |
| 12 | N36        | <br>     |        | 19.3 | 0.121 | 70  | 37.5 | 41.0 | 75.9 | 15.5 | 33.8 | 1285        |
| 13 | N37        |          |        | 24.6 | 0.058 | 85  | 50.0 | 47.0 | 213  | 22.9 | 44.5 | 900         |
| 14 | N38        |          |        | 24.6 | 0.123 | 60  | 86.7 | 43.0 | 152  | 15.7 | 42.0 | 1600        |
| 15 | N10        |          | 赤山砂岩   | 2.3  | 0.019 | 18  | 6.8  | 10.6 | 20.2 | 6.3  | 15.5 | 118         |
| 16 | N23        | ľ        | 花岗岩    | 3.9  | 0.092 | 17  | 12.9 | 10.3 | 27.6 | 4.1  | 9.6  | 86.5        |
| 17 | N 39       | (        |        | 2.6  | 0.023 | 9   | 7.5  | 9.5  | 8.0  | 3.0  | 4.5  | 65.0        |
| 18 | N 40       |          |        | 3.0  | 0.022 | 20  | 9.0  | 13.0 | 18.0 | 3.0  | 7.0  | 115         |
| 19 | N41        |          |        | 2.9  | 0.022 | 11  | 4.5  | 6.5  | 9.0  | 1.0  | 2.5  | 30.0        |
| 20 | N3         |          | 高家边页岩  | 9.4  | 0.043 | 50  | 21.5 | 17.0 | 52.6 | 13.4 | 21.2 | 170         |
| 21 | N 27       | ļ        | 象山砂岩   | 11.8 | 0.058 | 44  | 41.5 | 25.0 | 68.0 | 13.4 | 22.6 | 643         |
| 22 | N 30       |          |        | 9.3  | 0.049 | 53  | 22.5 | 16.0 | 56.0 | 10.8 | 22.6 | 915         |
| 23 | N31        |          |        | 7.1  | 0.030 | 47  | 19.5 | 11.0 | 30.0 | 4.7  | 10.4 | 143         |
| 24 | N 32       |          |        | 10.5 | 0.046 | 55  | 23.5 | 14.0 | 39.0 | 5.7  | 14.7 | 240         |
| 25 | N 33       |          |        | 7.2  | 0.068 | 34  | 9.0  | 12.0 | 33.0 | 6.3  | 10.0 | 248         |
| 26 | NI         |          | 黄马青砂页岩 | 5.0  | 0.054 | 59  | 27.2 | 41.9 | 82.4 | 14.3 | 31.7 | 732         |
| 27 | N28        |          |        | 10.2 | 0.028 | 69  | 28.0 | 64.0 | 105  | 18.6 | 28.8 | 1010        |
| 28 | N29        |          |        | 8.0  | 0.024 | 71  | 33.8 | 15.0 | 69.0 | 17.2 | 29.8 | 620         |
| 29 | N 42       |          |        | 8.7  | 0.080 | 76  | 29.1 | 11.0 | 63.5 | 11.4 | 25.0 | 585         |
| 30 | N 43       |          |        | 7.2  | 0.079 | 70  | 28.1 | 10.0 | 53.8 | 10.5 | 23.5 | 360         |
| 31 | N44        |          |        | 7.2  | 0.059 | 60  | 10.5 | 24.0 | 40.2 | 10.4 | 18.8 | 54 <b>5</b> |
| 32 | <b>N</b> 9 |          | 玄武岩    | 6.2  | 0.099 | 130 | 15.7 | 52.6 | 114  | 58.1 | 93.1 | 919         |
| 33 | N 45       |          | 辉长岩    | 5.2  | 0.076 | 127 | 18.8 | 154  | 163  | 60.0 | 61.0 | 1458        |
| 34 | N 46       |          |        | 8.2  | 0.022 | 76  | 15 2 | 176  | 171  | 44.0 | 47.0 | 1020        |
| 35 | N 47       | }        | 橄榄辉长岩  | 4.2  | 0.106 | 548 | 16.1 | 185  | 110  | 97.0 | 175  | 1925        |

注:编号 1-3 是灰潮土,4-8 是黄刚土,9-35 是黄棕壤,1-3 是长江冲积物,4-8 是下蜀黄土,10-14 是青龙灰岩,16-19 是花岗岩,21-25 是象山砂岩,26-31 是黄马青砂页岩,33-34 是辉长岩。

表 2 九个变量的统计量

| 变量<br>统计量 | As   | Hg    | Cr   | РЬ   | Си   | Zn   | Со   | Ni   | Мл   |
|-----------|------|-------|------|------|------|------|------|------|------|
| 均 值       | 15.4 | ბ.095 | 73   | 27.6 | 40.6 | 81.2 | 20.0 | 37.3 | 678  |
| 标准差       | 33.0 | 0.203 | 87   | 23.3 | 43.6 | 54.6 | 19.0 | 31.1 | 470) |
| 变异系数      | 2.14 | 2.14  | 1.19 | 0.84 | 1.07 | 0.67 | 0.95 | 0.83 | 0.69 |

表 3 九个变量的相关系数矩阵

|    | As      | Hg      | Pb      | Zn     | Mn     | Со     | Ni     | Cr     | Cu  |
|----|---------|---------|---------|--------|--------|--------|--------|--------|-----|
| As |         | +++     | +++     | +++    |        |        |        |        |     |
| Hg | 0.9854  |         | +++     | +++    |        |        |        |        |     |
| РЬ | 0.8192  | 0.7796  |         | +++    | +      |        | ļ      |        |     |
| Zn | 0.5955  | 0.5654  | 0.6996  |        | +++    | +++    | ++     |        | +++ |
| Mn | 0.1759  | 0.1798  | 0.4285  | 0.6521 |        | +++    | +++    | +++    | +++ |
| Co | 0.0696  | 0.1311  | 0.0585  | 0.5506 | 0.7121 |        | +++    | +++    | +++ |
| Ni | 0.0307  | 0.0884  | 0.0903  | 0.4680 | 0.7079 | 0.9297 |        | +++    | +++ |
| Cr | -0.0708 | -0.0026 | -0.0466 | 0.2584 | 0.5977 | 0.8509 | 0.8859 |        | +++ |
| Cu | -0.0115 | 0.0242  | 0.0036  | 0.5683 | 0.6979 | 0.8690 | 0.7307 | 0.6933 |     |

+++ P < 0.001 ++ P < 0.01 + P < 0.1

上述计算。而本文的全部计算工作系由一台 日制 SHARP PC-1500 袖珍计算机完成\*。

#### 结果与讨论

南京地区 35 个土壤样品所属土类、母质以及九种元素的测定值列于表 1. 从表 1 及表 2 的数据可以看出,不同样品中各元素的含量变化很大,尚不足以判断究竟是土壤类型还是母质类型控制着各元素的含量。表 3 是 35 个样品九种元素间的相关系数矩阵. 矩阵中的数值是相关系数,+号表示相关系数的置信度。从表 3 可以看出,元素钴、镍、铬、铜、锰、锌之间也有极显著相关,元素砷、汞、铅之间也有极显著相关。然而,在钴、镍、铬、铜、锰与砷、汞、铅之间却没有相关性。表现在表的右上部有一个空白区。这表明作为铁族元素的钴、镍、铬、铜、锰是一个集团,而元素砷、汞、铅可视作另一个集团。

用雅可比法求得该矩阵的九个特征值. 由表 4 可见,头两个特征值的累计贡献率已

表 4 九个特征值及其贡献率

| 特征值   | 贡献率   | 累计贡献率 % | 主成份 |
|-------|-------|---------|-----|
| 4.668 | 51.86 | 51.86   | 1   |
| 2.953 | 32.81 | 84.67   | 2   |
| 0.611 | 6.79  | 91.46   |     |
| 0.404 | 4.48  | 95.94   |     |
| 0.178 | 1.98  | 97.92   |     |
| 0.107 | 1.19  | 99.11   |     |
| 0.043 | 0.48  | 99.59   |     |
| 0.029 | 0.32  | 99.91   |     |
| 0.008 | 0.09  | 100.00  |     |

达到85%。因此,就选取它们作为两个主成份。 至此,35个样品、9个变量测定值的全部信息的85%已被归纳为两个主成份。 求得该两主成份的特征向量(表5)。它们分别代表9个变量在该主成份中的权系数值。由表5可见,第一主成份以钴为代表,主要反映元素钴、镍、锰、铜、锌、铬的富集程度。第二

<sup>\*</sup> 唐诵六,适用于 SHARP PC-1500 机的主成份分析 Basic 语言算法程序、资料, 1984.

| 表 5 两个主成分的特征向 | 表 5 | 两个 | · <b></b> | 分的 | 特征向量 | ŧ |
|---------------|-----|----|-----------|----|------|---|
|---------------|-----|----|-----------|----|------|---|

| + ct // |        | 特      |        | 征      |        | 向       |         | 量       |         |
|---------|--------|--------|--------|--------|--------|---------|---------|---------|---------|
| 主 成 份   | As     | Hg     | РЬ     | Zn     | Мп     | Со      | Ni      | Cr      | Cu      |
| 1       | 0.1813 | 0.1959 | 0.2104 | 0.3661 | 0.3941 | 0.4162  | 0.3987  | 0.3477  | 0.3764  |
| 2       | 0.5119 | 0.4851 | 0.4730 | 0.2373 | 0.0472 | -0.2104 | -0.2189 | -0.2825 | -0.2198 |

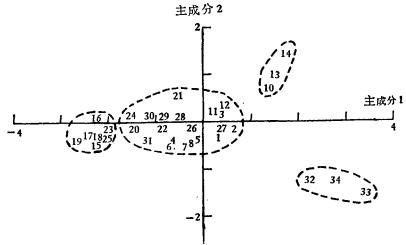



图 1 35 个样品按第 1, 2 主成份分类

(2)

主成分以砷为代表,主要反映元素砷、汞、铅的富集程度,与之相斥的元素则有钴、镍、铬、铜.

进一步求得该两个主成分的主成份方程:

$$Y1 = 0.005\text{As} + 0.967\text{Hg} + 0.004\text{Cr}$$

$$+ 0.009\text{Pb} + 0.009\text{Cu}$$

$$+ 0.007\text{Zn} + 0.002\text{Co}$$

$$+ 0.013\text{Ni} + 0.001\text{Mn}$$

$$- 3.098 \qquad (1)$$

$$Y2 = 0.015\text{As} + 2.394\text{Hg} - 0.003\text{Cr}$$

$$+ 0.02\text{Pb} - 0.005\text{Cu}$$

$$+ 0.004\text{Zn} - 0.011\text{Co}$$

-0.007Ni - 0.0002Mn

式中,各元素的系数值保留至小数后三位,但在实际计算时则为小数后九位。 利用公式

-0.385

(1)及(2),分别计算出 35 个样品的两个主成分值(表 6)。最后,以主成份 1 为横坐标,以主成份 2 为纵坐标,将 35 个样点逐个点人座标图中。将相互靠近的点用围线勾出,便得到图 1.

根据图 1 中样点的位置,大致可将 35 个样品分成四组.第一组是位于第一象限内离原点较远的样品 9、10、13、14(样品 9 越出图外未标出).第二组是位于第四象限内离原点较远的样品 32、33、34、35(样品 35 越出图外未标出).第三组是原点附近的 20 个样点.第四组是第一主成份值小于 -2 的7个样点.根据图 1 及表 1,可以作如下的讨论.从土壤类型看,第一、二、四组均为黄棕壤,第三组内则兼有黄棕壤、黄褐土及灰潮土三类.由此可见,根据九种重金属元素含量所得出的分组并不遵从土壤类型.从母质类

表 6 各土壤的主成份值

|    | 1      |        | 1        | 1                  | T      |
|----|--------|--------|----------|--------------------|--------|
| 编号 | Y 1    | Y2     | 编号       | Y I                | Y2     |
| 1  | 0.214  | -0.272 | 19       | -2.781             | -0.257 |
| 2  | 0.704  | -0.091 | 20       | -1.403             | -0.035 |
| 3  | 0.389  | 0.017  | 21       | -0.605             | 0.493  |
| 4  | -0.619 | -0.428 | 22       | -0.777             | -0.048 |
| 5  | -0.207 | -0.379 | 23       | -2.014             | -0.025 |
| 6  | -0.705 | -0.457 | 24       | -1.667             | 0.094  |
| 7  | -0.383 | -0.458 | 25       | -1.977             | -0.121 |
| 8  | -0.275 | -0.426 | 26       | -0.289             | -0.127 |
| 9  | 4.359  | 8.307  | 27       | 0.394              | -0.193 |
| 10 | 1.294  | 0.643  | 28       | -0.571             | 0.012  |
| 11 | 0.179  | 0.2+3  | 29       | -0.825             | 0.143  |
| 12 | 0.457  | 0.321  | 30       | -1.168             | 0.123  |
| 13 | 1.545  | 0.903  | 31       | <del>-</del> 1.264 | -0.363 |
| 14 | 1.793  | 1.667  | 32       | 2.152              | -1.318 |
| 15 | -2.271 | -0.381 | 33       | 3.425              | -1.463 |
| 16 | -2.244 | 0.048  | 34       | 2.498              | -1.209 |
| 17 | -2.645 | -0.252 | 35       | 7.688              | -4.476 |
| 18 | -2.415 | -0.250 | <u> </u> |                    |        |

#### 结 语

根据以上的讨论可见, 主成份分析有助

于阐明土壤中微量重金属元素的分布 规律。就南京地区而言,是成土母质类型对土壤中微量重金属元素的分布起着主导作用。现行的土壤分类不一定能反映这些元素的分布规律。这提示,在进行土壤环境中重金属元素的调查时,在设计布点采样方案、确定统计和制图单元、对测定数据进行分析判断等环节中,都应对母质状况给予更多的重视。

#### 参考文献

- [1] Ure, A. M. et al., Geoderma, 22:1 (1979).
- [2] 杨学义,环境中若干元素的自然背景值及其研究方法,16-20页,科学出版社,1982年.
- [3] 沈碧珍等,土壤学报,20:440-444(1983)。
- [4] 刘多森,土壤学报,16: 172-183 (1979).
- [5] 王明珠,土壤,15: 59-64(1983).
- [6] 徐彬彬,土壤学报,18: 176-184(1981).
- [7] Davis, J. C., Statistics and Data Analysis in Geology. John Wiley and Sons Inc., 1973.