表 1 回收率试验

水样编号	水样含铬量 (g/ml)	加人 Cr(III) 量 (g/ml)	加人 Cr(III) 后的 测定值 (g/ml)	回收率 (%)	加人 Cr(VI) 量 (g/ml)	加入 Cr(VI) 后的测定值 (g/ml)	回收率 (%)
1	2.14×10 ⁻⁹	2.00×10 ⁻⁹	3.88×10~9	94	2.00×10 ⁻⁹	5.88×10-°	96
2	1.24×10-9	2.00×10-°	3.10×10~°	96	2.00×10-°	4.92×10-9	94
3	4.88×10-10	4.00×10 ⁻¹⁰	9.22 × 10~10	104	6.00×10 ⁻¹	16.02×10 ⁻¹⁰	108
4	2.74×10 ⁻¹⁰	4.00×10 ⁻¹⁰	6.44×10 ⁻¹⁰	96	6.00×10 ⁻¹⁰	11.96×10-10	94

表 2 水样测定结果对比

水样编号	水样含铬量汞膜电极-流动电池法 (g/ml)	水样含铬量滴汞电极-示被法 (g/ml)	相对偏差	
1	2.48×10 ⁻⁹	2.53×10 ⁻⁹	-2.1	
2	1.65×10 ⁻⁹	1.65×10-9	0	
3	8.30×10 ⁻¹⁰	ε.60×10 ⁻¹⁰	-3.6	
4	7.76×10 ⁻¹⁰	8.34×10 ⁻¹⁰	-7.0	
5	3.58×10 ⁻¹⁰	3.40×10 ⁻¹⁰	+5.4	
6	2.40×10 ⁻¹⁹	2.48×10 ⁻¹⁰	-3.2	

- (2) 回收率试验 对 4 批水样经氧化后测定总铬量,作为已知含铬量的水样,并进行 Cr(III)和 Cr(VI) 的回收试验,结果见表 1.
- (3) 不同方法测定结果 见表2,1号与2号为不同地区的井水,3号与4号为自来水,5号为地下水,6号为池塘水。

参考文献

- [1] 厦门大学分析教研室,厦门大学学报,2,41(1965)。
- [2] 周继兴,鲍其儿,分析化学,8(2),99(1980).
- [3] 李南强**,高小霞,北京大学学报(自然**科学版), 1, 49(1980),

紫外分光光度法测定低浓度臭氧*

徐通敏 孙星炎 叶建农 (华东师范大学环境科学研究所)

臭氧是高效杀菌剂,也是形成光化学烟雾大气污染的一个重要因素。大气环境中臭氧浓度天然本底在 20 至 40ppb 水平,超过200ppb时,对人体健康影响已明显⁶¹²,长期生活在过量的臭氧环境中,可能诱发癌,因此监测臭氧已成为大气污染的重要指标之一.

前人应用的测定臭氧的方法各有优劣^[2-5],本文选用 BKI (硼酸缓冲剂碘化钾) 吸收剂,用紫外分光光度法测定低浓度臭氧.

实验部分

1. 仪器

日立 808 型双光束双单色 仪 分光 光度 计,附1厘米石英比色皿。HGS-805 型标准 臭氧发生器,华东师大环科所、上海第二分析 仪器厂研制。

^{*} 本文得到方禹之副教授的指导,特致谢意。

2. 主要试剂

BKI 吸收剂配制法 称取碘化钾 10 克,硼酸 6.2 克,用高纯水稀释至 1 升,溶液 pH 值为 5.5. 将吸收剂贮存于棕色瓶中,在暗处放置一天后可在一周内使用,保证吸收剂的本底吸光值漂移在 0.010 以下。

3. 实验方法

(1) 标准曲线绘制

移取以 BKI 为稀释剂的碘液(1×10⁻³N)0.25,0.50,1.00,1.50,2.00,2.50,3.00,3.50毫升,半小时内测定吸光度.标准曲线如图 1.($\lambda = 287$ 纳米为直线 $a,\lambda = 352$ 纳米为直线 b)。碘的浓度为 $5 \times 10^{-6}M$ 一 $7 \times 10^{-5}M$ 时服从比耳定律.

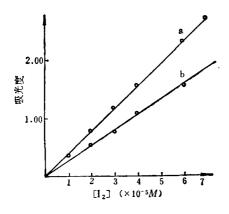


图 1 标准曲线

(2) 实验步骤

移取 10 亳升 BKI 吸收剂于U形多孔吸收管中,待臭氧发生器正常工作后,向吸收管中通人臭氧(在实际测定时直接采样),用节流孔控制气体流量为 0.4—0.5 升/分,记录通气时间,停止通气 10 分钟后,半小时内在 352 或 287 纳米处,以吸收剂为参比测定吸光值,用下式测定臭氧浓度:

$$[O_3] = 6.24 \times 10^4 \frac{TAV}{P \varepsilon Rt}$$

式中 T——实际温度 (${}^{\circ}$ K), P——实际气压 (毫米汞柱), A——吸光度, ε ——碘的摩尔 吸光系数(升/厘米・摩尔), V——吸收剂体

积(毫升),R——气体采样流速(升/分),t——采样时间(分)。

计算时可忽略气压校正因素,即P值以760毫米汞柱代入。

结果和讨论

1. 吸收光谱

碘在 BKI 吸收剂中的吸收光谱见图 2,其中碘的浓度为 $5 \times 10^{-5}M$ 。 由图 2 可见,两个吸收峰对应的波长为 $\lambda_1 = 287$ 纳米, $\lambda_2 = 352$ 纳米,相应的摩尔吸光系数为 $\varepsilon_1 = 38100$ 升/摩尔·厘米及 $\varepsilon_2 = 25700$ 升/摩尔·厘米,BKI 吸收剂在 280 纳米以下才开始吸收,并不影响 287 纳米处的吸收峰。

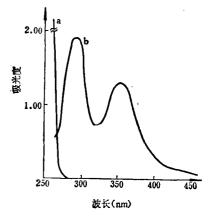


图 2 碘在 BKI 中的吸收光谱 1——BKI 吸收剂的吸收线(以高纯水为参比) 5——碘在 BKI 中的吸收曲线(以 BKI 为参比)

2. 臭氧在 BKI 吸收剂中的吸收效率 臭氧在 BKI 吸收剂中的吸收反应为:

[O₃] + 2I⁻ + 2H⁺ = I₂ + O₂ + H₂O I₃ 在 KI 中以 I₃形式存在,低浓度臭氧在大量 碘化钾中能被充分吸收。 串级实验结果见表 1,结果表明在第一吸收器中臭氧被吸收的效 率在 98%以上。实验条件:吸收剂 10毫升, 流速 0.5 升/分。1—5 号采样 10 分钟,在 352 纳米处测定。6号采样 1 小时,在 287 纳米处 测定。

3. 微量碘在 BKI 吸收剂中的稳定性

表 1 臭氧在 BKI 吸收剂中的吸收效率

编号	温度	第一吸收器			第二吸收器		
	(°C)	吸光度	[O ₃](ppm)	吸收效率(%)	吸光度	[O ₃](ppm)	吸收效率(%)
1	24	0.189	0.358	99	0.001	0.002	1
2	20	0.197	0.369	100	0	0	0
3	18	0.150	0.279	98	0.003	0.006	2
4	24	0.193	0.366	99	0.001	0.002	1
5	20	0.168	0.314	99	0.002	0.004	1
6	25	0.064	0.014	99	0.001	0.0002	1

低浓度臭氧被 BKI 吸收后生成的 碘浓度很低,为了研究微量碘在体系中的稳定性,对 1.028 ppm 臭氧源,在 15 °C, 10 毫升吸收剂,0.5 升/分,采样 8 分钟条件下,以停止通气时做为起始时间,随着时间的增加,在 352

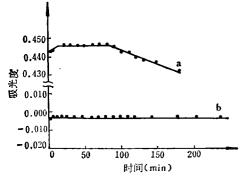


图 3 碘在 BKI 中的稳定性

纳米处的吸光度变化如图 3 曲线 a 所示. 为了进行对照,在同样温度. 流量的情况下,用洁净空气以同样的时间通过同样体积的吸收剂,在同样的波长下测了一组数据,见图 3 曲线 b.

由图 3 曲线 a 可知,10 分钟起,90 分钟 内吸光度不变,90 分钟后吸光度开始有所下 降.测定大气环境本底臭氧时,因浓度较低, 为了提高测定时的吸光度,可适当延长采样

表2 对照实验

序号	1	2	3	4	平均值	
BKI 法 [O, (ppm)	0.629	0.644	0.651	0.646	0.643	
碘量法 [O₃](ppm)	0.631	0.638	0.631	0.661	0.640	

弗 3 重现性实验

衣。 星火性失效									
编号	T(°C)	采样时间 t(min)	吸光度A	[O ₃](ppm)	平均值 [Ō₃](ppm)	标准偏差	变异系数		
1	22	15	0.210	0.327					
2	22	15	0.209	0.325		1			
3	22	17	0.242	0.333	0.3246	0.006	1.8%		
4	22	15	0.204	0.318		•			
5	22	15	0.206	0.320					
1	23	10	0.277	0.648					
2	23	10	0.277	0.648					
3	23	10	0.272	0.636	0.641	0.006	1.0%		
4	23	10	0.272	0.636					
5	23	7	0.191	0.638					
1	22	7	0.289	0.965					
2	22	7	0.282	0.941					
3	22	7	0.287	0.958	0.965	0.017	1.7%		
4	22	7	0.292	0.975					
5	22	7	0.295	0.985					

表4 测定结果

编号	采样流量 (I/min)	采样时间 (min)	吸光度 (A)	[O,](ppm)	平均值 (ppm)	标准偏差	变异系数(%)
1	0.5	60 90	0.064* 0.102*	0.014 0.015	0.015	0.0007	4.7
2	0.5	70 60 60	0.117* 0.100* 0.107*	0.022 0.022 0.024	0.023	0.001	5.0
3	0.5	10 10 10 10 10	0.342 0.345 0.327 0.357 0.343	0.640 0.646 0.612 0.669 0.642	0.642	0.020	3.2
4	0.5	5 5 5 5 5	0.148 0.152 0.150 0.143 0.160	0.550 0.565 0.558 0.532 0.595	0.560	0.023	4.1
5	0.8	10 10 10 10 10	0.189 0.193 0.185 0.194 0.197	0.162 0.165 0.158 0.166 0.168	0.164	o. 040	2.4
6	0.4	7 7 7 7	0.343 0.343 0.339 0.347	1.121 1.121 1.108 1.134	1.121	0.011	0.9

*在 287 纳米处测定,其余均在 352 纳米处测定时间。如 60 至 90 分钟。由于停止采样后 10 分钟内吸光度有上升趋势,故本文采取放置 10 分钟后再测定。

4. 对照实验

5. 重现性

调节标准臭氧发生器浓度为 0.32, 0.65, 0.97ppm, 流量 0.4 升/分,在 352 纳米处测定,进行重复性实验,结果见表 3. 以上结果表明,臭氧浓度在 0.32—0.97ppm 范围内,变异系数在 2% 之内.

6. 实测结果

在实验室及大气环境中实 测 结 果 见 表 4. 1,2 在华东师大校园,温度 25 \odot . 3,4,5,6,在华东师大环科所实验室,温度各为 20 \odot , 18 \odot , 20 \odot , 20 \odot .

小 结

用硼酸-碘化钾 (BKI) 吸收剂紫外分光 光度法测定低浓度臭氧,是一种简易、可靠、 便于推广的测定方法。利用 BKI 吸收剂被臭 氧氧化生成的微量碘,在 352 纳米或 287 纳 米处直接测定,可用来标定标准臭氧发生器 及测定大气或局部环境中的臭氧,实测范围 为 20ppb 至 1.1ppm,变异系数小于 5%。

参考文献

- [1] Becker, K. H., Schurath, U., Umschau 73, 310 (1973).
- [2] EPA, Fed. Regist., 39 (223), 22392 (Nov. 25, 1971).
- [3] Hodgeson, J. A., Hughes, E. E., Schmidt, W.
 P., Bass, A. M., EPA, -600/3-77-001a Vol.
 1-PB 264, 232, 3—12.
- [4] Flamm, D. L., Environ. Sci. Technol., 11, 978 (1977).
- [5] Demore, W. B., Patapoff. M., Environ. Sci. Technol., 10, 897 (1967).