降解得快^[3]. 此顺序也与文献报道的土壤六六六中各异构体顺序相同^[4]. 底泥中六六六在上游非工业污染区,各异构体比例与水中一致,即 $\alpha > \beta > r \ge \delta$; 而在天化及其下游,各异构体的比例则与工业原体的相近 $(\alpha > r > \beta > \delta)$.

枯水期河水中六六六各异构体的比例,除采样点 (14) 以上诸取样点为 $\alpha \ge \beta > \gamma$ $\ge \delta$ 外,其余各点均为 $\alpha > \gamma > \beta > \delta$; 而底泥中六六六各异构体的比例,在大部分取样点均为 $\alpha > \beta > \gamma > \delta$.

至于 DDT 的降解产物,无论在河水或底泥中,丰水期还是枯水期,所测得的 DDD 含量均大于 DDE 的含量,说明在蓟运河的特定自然条件下, DDD 是比 DDE 更为主要和更稳定的降解产物。

小 结

1. 采样河段河水中有机氯农药含量均低

于地面水污染标准,底泥中有机氯农药含量 除天化及其下游外,也都很低.

- 2. 主要污染源是天化的农药废水和污泥
- 3. 可以认为,目前农田中农药的施用量 不会对蓟运河造成污染。
- 4. 注意到天化附近河水及底泥中有机氯农药含量,1980年5月份(枯水期)较1979年10月份(丰水期)有较大幅度的增加,建议对蓟运河天化附近的有机氯农药污染继续进行调查研究和监测.

参考文献

- [1] 日本分析化学会关东支部编,公害分析指针,共立出版株式会社,9页,1972年.
- [2] 徐圣煦编著,农药化学,正中书局印行,9页,1969年.
- [3] 龚坤元,国外科学,第二集,科学出版社,93页,1978 年.
- [4] Tatsukawa, R. et al., Environmental Toxicology of Pesticides, F. Matsumura et al. Eds. (Academic Press, 1972), p. 229.

胶州湾潮间带和沿岸区的耐汞菌

I. 耐汞菌的数量分布

陈皓文

(中国科学院海洋研究所)

在受污染的特定海洋环境有较大数量的耐汞菌(Mercury-Tolerant Bacteria,本文简称MTB)。耐汞菌大量出现是它们对汞污染适应、选择、忍耐以至对抗的群体生态反应。耐汞菌数量变化与汞污染关系密切,这方面的研究国外多有报道[5,6,10,11]。但关于潮间带和沿岸区的报道尚不多。本文试图就 胶州 湾潮间带和沿岸区耐汞菌的数量分布作调查研究,以估计其生态意义。

一、调查和实验

(一) 采样站位

5 个定点调查站址如前文所述^{[11*}. 其余 10 站概况列于表 1 中,采样站位详见图 1.

^{*} 本文的站址序号由湾内到湾外,自北至南排列。文中 1、3、5、7、13 号为文献 [1] 中 I、II、III、IV、V 号站,其它站位也有变化,10 站前为湾内,11—15 站为湾外。

图 1 采样站位示意图

表 1 十个不定期站位概况

站位号	地名	概 况 描 述
2	粮油制桶 厂后海滩	污脏、沉积物表层孳生大量蓝绿藻、 工厂排污
4	沧口海水 浴场	比 13 站脏、海砂有些发黑、磷肥厂排污等
6	水清沟人 海口段	收纳化工、发电、造纸、轻工等排污 和生活废弃物
8	昌乐路沟 下 <i>游</i>	收纳印染、车辆制造、电镀、电器仪表、金属切削、塑料制品和生活污水, COD 高、悬浮物多、覆浊、有高汞史
9	大港五区	海轮停泊、货物装卸、浮油多
10	大港三区	大船较少
11	养殖所码头	尚干净
12	二中后海滩	工业、民用生活污物和肥料压力,水 质肥沉积物乌黑
14	感光材料厂 出水口附近	尚干净
15	湛山湾	水较干净,中细砂底质为主

(二) 样品采集

方法详见前文^山。 在微生物采样时,平 行采集化学分析用样品,现场测定温度和 pH 值等.

(三) 好气异养菌和耐汞菌 数量 的计数

1. 海洋好气异养菌: 在海水肉汁胨琼脂平皿上计算海洋好气异养菌菌落形成单位数

(CFU) (简称 AA, 下同)[1].

- 2. 海洋好气异养耐汞菌: 在上述培养基中添加不同定量的 Hg²+ (HgCl₂形式)收集耐汞菌,一般均以含 10ppm Hg²+ 的培养基上的MTB 的 CFU (即 MT) 作调查区内耐汞菌数量估计的依据.
- 3. 淡水和半咸水琼脂培养基上的耐汞菌:淡水培养基基本成分如前述^[1]. 半咸水培养基成分如下: A. 蛋白胨 5 克; 氯化铵 2 克; 磷酸铁 0.1 克; 磷酸二氢钾 0.3 克; 磷酸氢二钾 2克; 陈海水 1000 毫升. B. 蒸馏水 1000毫升. 两份 A 液和一份 B 液相混,琼脂 2%.pH7.4. 以上两培养基按需添加 Hg²⁺.

上述培养基上各加稀释样品 0.1 毫升涂布,于24℃ 培养 14 日,三次检查菌量,换算成每毫升表水或每克湿沉积物表层样中的MTB数(即 MT). 从含汞平皿上挑取耐汞菌菌落,纯化,保存备用.

(四)样品中汞含量等参数的测定*

汞含量用 YYG-77 冷原子荧光测汞仪测定. COD 用碱性高锰酸钾法测定^[3].

(五)数据处理

对部分数据作方差分析和一元回归分析^[2],以说明耐汞菌数的地理学差异和季节分布、耐汞菌等与样品汞含量等参数的关系。

二、结果和讨论

(一) 耐汞菌数量及其变化

1. 定点站耐汞菌数

表 2 列出了五个定点站上 MT、MT/AA 的年平均数,它们基本上代表着该区 MTB 的数量范围。在水中是 3.37×10³—6.16×10⁶,平均为 1.77×10⁶;在沉积物中是 2.17×10⁶—3.14×10⁶,平均为 1.45×10⁶,接大小排列,则水中是 7 站> 3 站> 5 站> 1 站> 13 站;沉积物中是 5 站> 3 站> 1 站> 7 站> 13 站,沉积物中的 MT 比水中的高。这吻合于

^{*} 汞主要由本所郑舜琴、张淑美、庞学忠测定; COD等由青岛化工厂赵敦瑾等测定;在此一并致谢。

表 2 五个定点站 上MT、MT/AA 的比较

站号	沉 积	沉 积 物		水
和力	MT	MT/AA	MT	MT/AA
1	9.17×106	0.0242	5.74×10°	0.0090
3	2.24×10 ⁷	0.0049	1.45×106	0.0755
5	3.14×10 ⁷	0.0098	6.42×105	0.0728
7	9.15×10°	0.0106	6.16×106	0.1382
13	2.17×10 ⁵	0.0001	3.37×10^{3}	0.0055
平均	1.45×107	0.0099	1.77×106	0.0602

Nelson 等的估计^[7], MT/AA 范围在水中是 0.0055—0.1381, 平均 0.0602; 沉积物中是 0.0001—0.0242, 平均 0.0099。按大小排,则 水中是 7 站> 3 站> 5 站> 1 站> 13 站; 沉积物中是 1 站> 7 站> 5 站> 3 站> 13 站。

从三种培养基上得出的培养情况列于表3,证明潮间带大量的微生物和 MTB 也适于淡水和半咸水环境. 含10ppm Hg²+ 培养基上的 MT 在淡水培养基上最少,海水肉胨培养基上最多. 只有半咸水培养基上 MTB 能耐 50ppm Hg²+,说明汞在半咸水和海水里比在淡水里可能形成更多的 HgCl⁻¹/HgCl⁻²络合物,其毒性低于 Hg²+[4]. 这还表明潮间带的 MTB 主要来自陆水,它们有广泛的盐度适应性.

MT、MT/AA 等逐月和季节变异画在图 2—3 中,图 2—3 描绘出 MT 的主峰月在春末和夏季月份,这可能与大量生源物质及温度增高有关。这在沉积物 5 站和水的 7 站较为明显。图 2 还表明沉积物 MT 有明显的季

节变化,其主峰在夏,次峰在春,低谷常在冬。 水中的次序则为春>夏>秋>冬(图 3)。

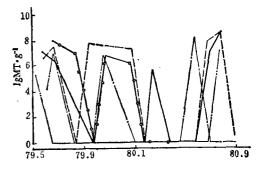


图 2 五个定点站沉积物表层 MT 的逐月变化 (当 MT 为 0 时 3 纵坐标作 lgl 处理)

I站——o—	7 站	
3 站	13 站	• • • • • • • •
5站 — — — —		

图 3 五个定点站水中 MT 的逐月变化 (当 MT 为 0 时 4 从 4 标均作 le1 外理)

(当 M 1 为 0 时)	777-71F 18	* A. 4.
1站 —— 0—	7 站	
3站———	13 站	
5站		

不同站位与样品影响到 MT/AA 及其季节变化分布上的差异. 表 4 表明的站位对 MT/AA 的影响,即地理学差异是显著的. 这

表 3 7号站在不同培养基上 MT、MT/AA、AA 的比较*

培养基中汞(ppm)	0 5		1	0	50		
CFU 数等 培养基种类	AA	мт	MT/AA	-MT	MT/AA	мт	MT/AA
	3.93×10 ⁷	2.35×10 ⁶	0.0598	3.75×10 ⁶	0.0954	0	0
半咸水	1.69×10 ⁷	1.45×106	0.0855	7.5×10 ⁵	0.0444	5×10 ⁴	0.0029
後 水	1.82×10 ⁷	1.35×10 ⁶	0.0742	3×10°	0.0165	0	0

^{*} 水样, 1981.6.11.

表 4 五个定点站上 MT/AA、AA 季节分布方差分析

	-1- 1000 H000 ZE 00 FO						
样品	项目	F值	过 考 性				
水	мт/аа	1.58	$*(\alpha = 0.25)$				
元 积物	MIJAA	2,94	$*(\alpha = 0.25)$				
水	4.4	1.96	$*(\alpha=0.25)$				
沉积物	AA	0.61	不显著				

^{*} 表示差异显著

表 5 五个定点站上水 MT/沉积物 MT 的比较

居号	水 MT/沉积物 MT
I	0.0625
3	0.0617
ñ	0.0204
7	0.6732
13	0.0155

表 6 MT 在五个定点站上出现频率比较

站 号		1		3		5		7		13
——————————— 样品	水	沉积物	水	沉积物	水	沉积物	水	沉积物	水	沉积物
采样次数	11	12	13	12	11	14	13	12	15	12
MT 出现次数	6	4	8	5	5	7	7	4	3	2
各站 MT 出现次数/采样次数×%	54.6	33.3	61.5	41.7	45.5	50.0	53.9	33.3	20.0	16.7
五站 MT 出现次数/ 采样平均次数×%		46.0	(水)			·	35.5 (१	冗积物)		

表 7 不定期站上 MTB 的比较

	-	1 72 74.72		U 1A
站号	样品	МТ	MT/AA	采样日
2	沉积物	1.72×108	0.2147	79.6.22
4	沉积物	4×10°	0.1429	79.6.22
6	沉积物	1.83×107	0.0764	81.3.21
12	沉积物	<1×10 ⁵	<0.0025	79.6.4
6	水	9.92×10°	0.2332	81.3.21
6	水	9×10°	0.2606	81.5.20
8	水	1.38×105	0.0157	81.5.20
8	水	6.98×10°	0.0191	81.5.29
9	水	2.19×108	4380	79.10.10
10	水	0	0	80.3.16
11	水	5×104	0.0039	79.10.10
12	水	7×10^{5}	0.0368	79.6.4
14	水	1×10°	0.0035	79.10.10
15	水	0	Ü	81.3.22

种地理学差异还表现在水MT/沉积物 MT 的 比率差异上(表 5),这一比率的增大,反映了 两种介质中 MTB 数量差距的缩小及环境汞 污染的加重[6]。 表 6 则说明水和沉积物这两 种介质对 MTB 出现频率有不同的影响: 在 水中的 MTB 出现频率大于沉积物。 这与汞 污染物随水的流动和陆地排污有关,

2. 不定期站上的耐汞菌数

表 7 列举了 9 个不定期站上 MT 等数 据,它们呈现出湾内多于湾外、污染区的高于 清洁区、沉积物高于水的趋势,其中以湾内2 站最高(沉积物). 水中以9站最多,水中以 湾外的 15 站、沉积物以湾外的 12 站最少(参 见表 8).

(二) MT、MT/AA 与环境理化参数 的关系

1. MT、MT/AA 与样品汞含量的关系

表 8 列出了 18 个样品 MT、MT/AA 与 Hg 含量间的关系,由表 8 绘出的图 4 表达了 MT与Hg的直线回归,若以W代表水样,则 MT(W)—Hg(W) 间的回归方程为:

 $MT(W) = 8.838 \times 10^4 + 1.5141 \times 10^5 \times$ $H_g(W)$. 回归截距 $a = 8.838 \times 10^4$,其物 理意义可理解为相当于汞污染消除后水体的 水中耐汞菌的一般数, 湾外的11、13、14、 15 等站的 MT 均低于此值。 MT/AA(W)— Hg(W) 间也有正相关存在. 耐汞菌与汞的 相关性说明在一定条件下, MT、MT/AA 的增 高也部分地反映特定环境汞污染的加重[6]。

表 8 水样含汞量与 MT、MT/AA 的关系

$Hg(\mu g/l)$	МТ	r(Hg-MT)	MT/AA	r(Hg-MT/AA)	站号	采样日
0.014	0		0		13	82.8.27
0.016	5×10°		0.0222		9	82.8.27
0.029	5×10³)	0.0172		15	82.8.27
0.032	0		0	.	11	82.8.27
0.033	3.05×10°		0.1419	Ì	1	82.8.27
0.033	3.8×10°		0.0638		2	82.8.27
0.043	2×104		0.0290		14	82.8.27
0.052	1.45×10°		0.2148		4	82.8.27
0.061	1×104		0.1053		10	82.8.27
0.152	1.5×10 ⁴	0.624	0.0278	0.081	3	82.8.27
0.435	2.3×10 ⁵		0.0208		8	82.8.27
0.53	1×105	1	0.3333		7	81.3.21
0.923	3.1×10 ⁵		0.1538		6	82.8.27
0.93	3×10 ⁵		0.3158		7	81.3.21
1.5	2×10°		0.0071		8	81.5.20
1.5	2.5×10°		0.0450		8	81.5.20
1.83	4.45×10°		0.0434		12	82.8.27
0.037	1.05×10°		0.0598		5	82.8.27

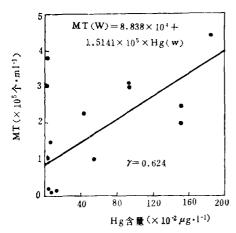


图 4 18 个水样 Hg 含量与 MT 的关系

表9 COD与MTB的关系*

COD(mg/l)	MT'	MT/AA	站号	采样日
68.6	2.5×10°	0.9259	6	81.5.20
80.0	2.35×10 ⁶	0.6267	6	81.5.20
88.0	3.5×10°	0.0100	6	81.5.20
136.0	2.5×10°	0.0450	8	81.5.20
152.0	1×10 ⁵	0.0100	8	81.5.20
160.0	2×10 ⁵	0.0077	8	81.5.20
160.0	0	0	8	81.5.20

^{*} 水样

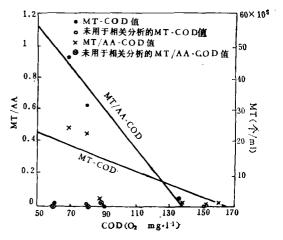


图 5 水样 COD 与 MT、MT/AA 的关系

2. 耐汞菌与 COD 的关系

表 9 列举 MT、MT/AA 与样品 COD 的关系。根据表 9 的 MT-COD、MT/AA-COD 关系画出了图 5. 由此可知水中 MT、MT/AA 与 COD 间有良好的负相关,r 值分别为 -0.83 和 -0.75 (α 均为 0.05)。 其相应的回归方程分别为 MT(W)=32.7362 × 10^5 -0.2281 × 10^5 × COD(W) 和 MT/AA(W) = 1.1371 -0.0075 × COD(W). 截距 a =

表 10 MTB 等与温度的相关性

样品	站号	мт-т	MT/AA-T	AA-T
	1	0.496	0.301	0.891
沉	3	0.289	0.669	-0.266
积	5	0.466	0.318	-0.182
- '	7	-0.005	-0.049	0.382
物	13	0.368	-0.088	-0.327
	平均	0.323	0.230	0.100
	1	0.471	0.145	-0.037
	3	0.367	0.365	0.035
水	5	0.550	0.543	0.690
水	7	0.280	0.526	-0.396
	13	0.500	-0.303	0.273
	平均	0.434	0.255	0.113
五站水, 的 总		0.378	0.243	0.106

 32.7362×10^5 可理解为随着 COD 降低及其他条件适于 MTB 时的最高 MT 水平. 而截距 a=1.1371 则意味着在上述情况中 MT/AA 的可增之值. 这两种相关性从反面暗示 MTB 与 O_2 的密切关系 $^{[8]}$. COD 消耗 O_2 从而阻抑好气 MTB 生长繁殖,减缓汞的好气性甲基化进程,因而影响到环境中汞的迁移 $^{[9]}$.

3. 耐汞菌等与样品温度的关系

 $_{_{1}}$ MT、MT/AA、AA 与样品温度(T)的相关分析结果列于表 10 中。 MT~T 的 r 值 ($\alpha = 0.05$) 在水中只有 5 站的接近于有意义的正相关。 MT/AA 与T的 r 值 ($\alpha = 0.05$)仅 3 站的沉积物表达出较好的线性 正相关, 5 站的水仍接近于线性关系。

AA-T的 10 个 r 值有一半为正的,其中的两个表达出良好的相关性。 总的看来,三对相关分析表明水中比沉积物中相关性好。MT 受温度的影响较大,它对温度的反应比普通微生物要敏感些。同时也说明包括 MTB 在内的微生物,其数量分布除受温度影响外,还受其他环境因子的制约。

三、小。结

1. 本工作表明耐汞菌的出现频率水中比

沉积物中高,其数量是沉积物中多于水中,大体范围是 2.17×105—3.14×107个/克(沉积物)和 3.37×103—6.16×106个/毫升(水). 沉积物以李村河出海口(5站)的最多,水以海泊河出海口(即7站)最多. MT/AA 在水中以海泊河出海口最高,沉积物以石油化工厂后海滩(即1站)最高. 13站上无疑总是最低、最少,湾内高于并多于湾外的.

- 2. MT、MT/AA 与Hg量为正相关. MT、MT/AA 的提高至少部分地意味着特定环境 汞污染的加重. 把 MT 这个参数结合进汞污染的环境监测中去是有意义的.
- 3. MT、MT/AA 与 COD 间有负相关。MT、MT/AA 比 AA 受温度影响大,MT 最高数季节在春末和夏季。MT、MT/AA 表现出的季节分布趋势受地理学特异性影响大。
- 4. 虽然大量出现的耐汞菌能参与汞污染的迁移与净化活动,但样品中不时出现的超标高汞量等表明陆地仍有不适当排污,这对微生物正常生态活动仍有抑制的可能。

曾呈奎所长和吴超元副所长对本文提出过宝贵意见,在此深表感谢.

参考文献

- [1] 陈皓文,环境科学学报,1(4),313 (1981).
- [2] 高玉堂,环境监测常用统计方法,81,113页,原子能出版社,1980年.
- [3] 德格雷蒙公司(韦荫辉等译),水处理手册,57页,化 学工业出版社,1959年.
- [4] Babich, H. et al., Can. J. Microbiol., 25(11), 1257(1979).
- [5] Colwell, R. R. et al., Proc. Int. Conf. Transp. Persis. Chem. Aquat. Ecosys., Part III, 1-10, 1974
- [6] Mills, A. L. et al., Environ. Contam. Toxico., 18(10), 99(1977).
- [7] Nelson, J. D. et al., Prep. 8th Annu. Conf. Mar. Technol. Soci., pp. 302-312, 1972.
- [8] Nelson, J. D. et al., Microbiol. Ecol., 1, 191 (1975).
- [9] Olson, B. H. et al., Water Res. 10, 113 (1976).
- [10] Walker, J. D. et al., Appl. Microbiol., 27(1), 285(1974).