环境样品106钌的快速分析

马俊杰 周世贤 赵世焕 (辽宁省劳动卫生研究所) (丹东职业病防治所)

166 钌是核裂变产物中主要的核素之一, 核爆炸与核动力设施都将有一定量的¹⁶⁶ 钌进 入环境,造成不同程度的污染^[1]。因此,¹⁰⁶ 钌 的分析在环境放射性监测中占有重要位置。

本文探讨了用蒸馏法分析环境样品¹⁰⁶ 钌的最佳条件,方法的优点和适用范围。

一、实验部分

(一) 仪器

钌蒸馏装置(见图1)。

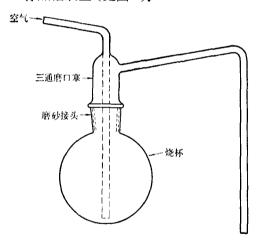


图 1 钌蒸馏器

(二) 方法

样品加入钌载体后于 9N 硫酸溶液中用高锰酸钾将钌氧化成四氧化钌,加热通气将其蒸馏除去,被 3N 的氢氧化钠溶液吸收,然后用乙醇将其还原成二氧化钌,二氧化钌用盐酸溶解后用镁粉将四价钌还原成 金属 9 放射性,称重计算产额.

(三) 最佳实验条件的选择

1. 蒸馏时间

取饲料灰 5 克,加入钌载体 2 毫升、9 N 硫酸 30 毫升、高锰酸钾 1 克. 改变蒸馏时间. 结果如图 2.1 小时后钌回收率不再增加,故选定蒸馏时间为 1 小时.

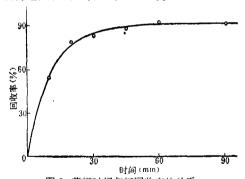


图 2 蒸馏时间与钌回收率的关系

表 1 高锰酸钾用量对钌回收率的影响

高锰酸钾用量 (g)	钌载体加入量 (mg)	钌载体回收量 (mg)	钉化学回收率(%)
0.1	18.0	0	0
0.2	18.0	10.0	55,6
0.3	18.0	12.6	69.8
0.5	18.0	15.7	87.2
1.0	18.0	17.0	94.2
1.5	18.0	16.4	91.1
2.1	18.0	16.6	92.2

2. 高锰酸钾用量

取灰 5 克,加人 2 毫升钌载体、30 毫升 9 N 硫酸,改变高锰酸钾用量,结果列入表 1 中.

由表 1 可见,高锰酸钾在一克以上钌的 化学回收率不再增加.故高锰酸钾用量为一 克.

3. 硫酸及氢氧化钠溶液浓度的确定

实验结果表明,硫酸溶液浓度从 6N 至 18N,钉回收率均在 90% 以上,且无明显差异。因此,确定硫酸溶液浓度为 9N;氢氧化钠溶液的浓度从 2N 至 6N,对钉回收率无影响。考虑在蒸馏过程中万一出现速度过快

时也能定量地吸收蒸出的四氧化钌,我们采用 3N 氢氧化钠为吸收液.

(四) 化学回收率与放化回收率

实验结果表明平均放化回收率 (94.0 ± 0.9)%, 化学回收率为 (92.7 ± 0.2)%, 其比值为 1.01, 说明钌载体与106 钌交换完全.

(五) 去污因数的测定

本方法对⁹⁰ 锶、¹³⁷ 铯、¹⁴⁴ 铈、⁴⁰ 钾的去污, 在加入 10³ cpm 的情况下,去污因数均达 10³, 说明方法具有良好的去污能力。

(六) 方法适应性

取不同的样品灰各5克(水5升),按最佳实验条件进行。结果见表2.

样品名称	钌载体加入量 (mg)	钌载体回收量 (mg)	钌化学回收率(%)
饲料灰	19.4	18.4	94.8
大 豆 灰	19.4	18.5	95.4
高粱米灰	19.4	17.0	87.6
菠 菜 灰	19.4	17.8	91.8
白 梨 灰	19.4	17.2	88.6
目 鱼 灰	19.4	17.2	88.6
虾 灰	19.4	18.2	93.8
土 瀴	19.4	17.7	91.2
自 来 水	19.4	17.5	90.2
海 水	20.8	19.2	92.3

表 2 不同样品灰钌的化学回收率

可见方法对不同样品的适应性较好。

二、 小 结

本方法不但适用于水、尿、土壤^[2],而且也适用于粮食、蔬菜、水果、海产品等样品中¹⁰⁶ 钌的分析。方法灵敏度达 10⁻¹² 居里/克灰。

与四氯化碳萃取法比较,蒸馏法省去了

较烦杂的碱融步骤,用一小时的蒸馏代替了萃取和反萃取的操作。 因而简化了操作,节省了时间,做一组平行样品仅需 3 小时,适用于大量环境样品¹⁰⁶ 钌的分析。

参考文献

- [1] 岩岛等, Radioisotopes, 28, 184-193. (1979).
- [2] 工业卫生实验所《环境放射性监测技术手册》,234—236,(1976).