1980 年夏季北京降雨酸度的考察

赵殿五 牟世芬 陈乐恬 刘克纳 (中国科学院环境化学研究所)

近些年来,"酸雨"引起了人们的注意^[1,2,3,4]。

我们于 1979—80 年冬和 1980 年夏在北京几个地点收集了雨雪样品,进行分析。其目的是对我国北方具体条件下的"酸雨"问题进行初步考察,并为进一步的研究打下基础。

一、采样和分析

采样点共有十处,见表 1. 当前限于条件,没有能同时测定其他空 气污染物 (SO₂, NO_x, 飘尘)和气象因子。

在各采样地点,根据周围情况估计,和平门、灯市口、东单、西四等处空气污染较重,阜成门、中央民族学院次之,环境化学所和怀柔县则是比较轻的.

分析项目和所得结果见表 1. 其中,pH 用 PHS-2 型酸度计测定,Ca⁺⁺ 用 EDTA 络合滴定法,其他离子用 Dionex-14 型离子色谱仪测定.

表 1 雨水中离子浓度平均值

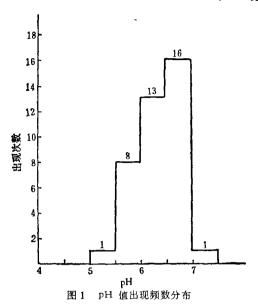
地 点	降雨		pH	离子浓度(mg/l)						
	次数	样品		SO ₄	NO ₃	F-	Cl-	NH†	Ca++	Na+
阜成门	12	20	5.36—7.44	13.6 (3.5—78)	5.2 (0.4— 26.5)	0.43 (0.1—1.3)	4.8 (0.3—27)	2.9 (1.4—5)	4.89 (1.31— 9.38)	1.4 (0.5-8.4)
环境化学所 (西北近郊区)	14	18	5.596.96	8.6 (2-34)	2.6 (1-6.5)	0.32 (0.1 0.95)	3.4 (0.2-7)	2.3 (0.7—4.4)	3.37 (0.09— 6.3)	1.8 (0.4- 10.4)
中央民族学院 (西北近郊区)	5	6	5.28-6.7	8.9 (4—11.5)	1.8 (13)	0.27 (0.2-0.4)	2.0 (0.3—3.5)	_	_	
和平门	2	3	5.78—6.64	23 (21—24)	7 (5.5—9)	0.43 (0.4—0.5)	4.1 (2.2—7.5)	5.5 (4.2—6.6)	12.56 (8.06— 18.03)	5.5 (1.6-5.9)
怀柔县	4	4	5.57—6.5	3.63 (1-10)	1.25	0.27 (0.08— 0.6)	0.8	1.13 (0.6—1.6)	_	1.25 (0.8-1.6)
打市口	2	2	6.28-6.61	12.5	2.35	0.25	0.7	′ 3.15	8.79	1.35
西苑	2	3	5.94— 7 .04	6.5 (5—9)	1.75	0.16 (0.1 0.23)	1.23 (1.1—1.4)	2.55	6.24	1.8
东 单	1	1	6.64	49	7.5	1.0	3.3		-	_
西四	1	1	6.7	25	9.3	0.38	16	_		
北京气象台 (东南近郊)	1	1	6.42	5.0	1.0	0.2	0.4	1.4	_	1.2

注:少数特异值未参加统计计算.

二、结果初步分析

1. 酸度 (pH)

各次降雨的 pH 值 (分段采样者取平均值)共有 39 个,按出现频数绘成图 1. pH6—7 共出现 29 次,占 74%; pH5.5—7 共 37 次,占 94%。 这个结果,与 1973 年 8 月和 1974年 5 月的结果^[5] 是相似的。 在冬季采暖季,SO₂ 水平为夏季的三倍左右,但降雪的 pH^[6] 与夏季降雨的 pH 也是相近的。


各场降雨的 pH, 在空间的分布上,看不

出有明显的规律性。虽然有些采样地点,附近的民用燃料、工业、交通等情况差别是很大的。国外研究者曾指出,郊区由于颗粒物较少,降水的酸度高于市区^[7,8]。但北京目前尚不能明显看出。在 pH 与各种离子之间,看不出有相关性,日本有人也曾得此结果^[9]。

在降水过程中,pH 值一般逐渐减小,见表 2. 这是因为空气中中和酸的物质(颗粒物)被雨水冲洗而减少的缘故. 但从 8 月 26—28 日的数据来看,pH 减小后似有回升的趋势. SO₄= 和 NO₃ 也是这样,而且其回

表 2 降水过程中离子浓度的变化 (mg/l)

日 期	地点	pН	SO [#]	NO ₃	F-	Cl-	NH‡	Na+	Ca++
80.2.25(降雪)									
7:30	阜成门	7.30	j]	Ì		· .		}
9:30	阜成门	7.08		}	!		}		}
12:00	阜成门	6.64							
80.6.12	1								
20:30	阜 成 门	1	78	16.6	0.82	6.3	ĺ '		}
23:00	阜成门		25	10.5	0.62	8.2			
80.6.29									
9:00	阜 成 门	7.44	15	2.5	0.21	0.30			<u>.</u>
13:00	阜 成 门	5.7	. 9	2.5	0.1		}		
18:00	阜成门	5.36	16	4.0	0.41	1.1			
80.7.24									
7:30	阜成门	6.54	16	5.0	0.35	1.6	5		
9:00	阜 成 门	6.24	6.0	1.0	0.18	2.4	3	ĺ	ļ
12:00	阜成门	3.70	9.0	2.5	0.3	8.2	4.4		}
80.8.8									
13:20	和平门	6.18	24	5.5	0.5	2.2	5.7	1.6	11.58
15:30	和平门	5.78	24	9.0	0.4	2.7	6.6	2.1	8.06
80.8.27	阜成门	6.38	23	4.5	0.7	1.0	2.2	1.0	7.62
夜	阜成门	6.28	3.5	1.0	0.1	_	1.5	0.5	1.31
8.28 7:45	阜 成 门	6.84	6	1.0	0.18	0.9	1.4	1.2	8.78
10:10	阜成门	6.02	6	_	0.15	2.6	2.4	1.6	3.26
15:25	阜成门	6.04	11	1.5	0.15	3.1	3.1	1.9	1.67
18:00	阜成门	6.29	10	1.5	0.15	2.4	2.8	1.6	2.36
80.8.26 晚	环化所	6.85	11	2.0	0.4	2	3.0		6.3
8.27 晨	环化所	6.89	6	1.5	0.6	6.9	2.2	1.8	3.66
夜	环化所	6.4	6.5	1.5	0.1	0.2	2.0	1.2	2.19
8.28 晨	环化所	5.59	5	1.0	0.1	_	1.5	0.4	1.31
륁	环化所	6.94	6.5	1.5	0.2	1.5	1.1	2.0	2.10
晚	环化所	6.60	7	1.5	0.2	0.7	2.0	2.4	0.09

升先于 pH.

根据此次以及过去的降水酸度测定结果 看,北京当前的降水是近中性的,还不能说已 有人为污染形成的酸雨出现。

2. 各种离子

雨水中各种离子的浓度平均值见表1.

可以看出,雨水中含量最高的都是 SO_{i}^{T} ,其次为 Ca^{++} 、 NO_{3}^{-} 、 Cl^{-} 、 Na^{+} . F^{-} 在各点都很少。 这与北京空气中颗粒物的情况相似^[10]。 颗粒物中 SO_{i}^{T} 与 NO_{3}^{-} 的重量比约为 $2-3^{[10]}$,雨水中则一般大于 3.

从各采样地点来看,和平门和阜成门的样品中,几乎各种离子的平均浓度都高,而地处近郊和附近工厂较少的环境化学所和中央民族学院则低。这反映了当地污染源情况。同时也表明,近地面层空气的污染对降水水质有着显著的影响。 但如上所述,pH 值的空间分布却没有规律性。 这可能是因为在颗粒物水平高的情况下,雨水的 pH 是多种因素综合影响的结果。

北京市城区和近郊区夏季空气中 SO₂ 的水平是不高的。据北京市的测定,1979 年 9 月城近郊区 SO₂ 的日平均浓度为 0.04mg/m³, NO_x 的日平均浓度为 0.10mg/m³。远郊工业区夏季 SO₂ 水平虽很高(1978 年 9 月日平均为 0.14mg/m³),但对城近郊区的 SO₂ 水平贡献不大。因此,城区雨水中 SO₇ 的来源,是需

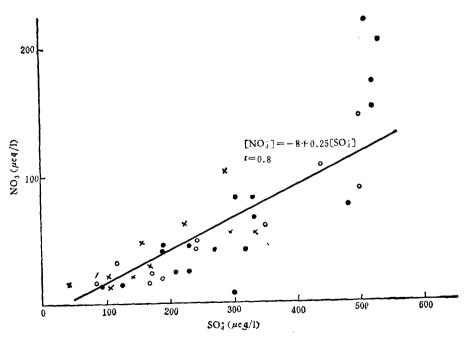


图 2 SO⁷ 与 NO₇ 的相关关系 ●阜成门 ×环化所 **Q**其他地点

查清的一个问题。

雨水中 SO_{7}^{-} 与 NO_{3}^{-} 的当量浓度之间存在着相关关系,相关系数 r=0.8,见图 2. 这是所测各种离子间唯一有较密切相关的情况.

北京空气中颗粒物所含 NH_4^+ 和 SO_4^- , 其当量浓度之间具有较稳定的比值,为 $0.63-0.78^{[10]}$ 。但雨水的这个比值变幅很大,为 0.23-1.34。

3. 阴阳离子的平衡

在雨水中,阴离子和阳离子二者的总当量浓度应当相等。国外的酸雨研究一般只测定 SO_{1}^{-} 、 NO_{3}^{-} 、 CI^{-} 和 H^{+} (pH)、 NH_{4}^{+} 、 Ca^{++} 、 Na^{+} 、 K^{+} 、 Mg^{++} ,而且能大致得到平衡^[11,12]。

现将数据较完整的测次列表计算阴阳离子的平衡(表3)。由表可见,除少数几个例外,绝大部分的阳离子总当量浓度大出很多。这说明,在北京目前的条件下,研究降水的酸度,可能还有其他的阴离子是必须考虑的。

这个问题需在今后的研究中弄清楚. 有可能是 HCO₃-的作用. 其可能来源有三: 燃

表 3 离子平衡计算 (μcq/l)

地 点	时间	pН	[-]	[+]	差
阜成门	1980.8.9	5:58	412.7	763.5	+350.8
阜成门	8.27	6.36	617.9	546.5	-71.4
阜成门	8.27	6.28	94.4	171.2	+76.8
阜成门	8.28	6.84	176.3	569	+392.7
阜成门	8.28	6.04	350.6	338	-12.6
阜成门	8.28	6.29	308.6	343.5	+34.9
环化所	1980.8.15	6.56	365.5	453	+87.5
环化所	8.16	6.59	231.5	240	+8.5
环化所	8.27	6.89	377.8	383.3	+5.5
环化所	8.27	6.4	170.2	272	+101.8
环化所	8.28	5.59	125.5	166.4	+40.9
环化所	8.28	6.94	212.5	253	+40.5
环化所	8.28	6.60	195.7	215.5	+19.8
和平门	1980.8.3	6.64	778	1392	+614
和平门	8.8	6.18	679.1	965.5	+286.4
和平门	8.8	5.78	743	861.5	+118.5
怀柔县	1980.7.20	6.07	258.5	391.4	+132.9
西 苑	1980.7.24	7.04	184.1	490	+305.9
灯市口	1980.8.15	6.61	205.1	645.5	+440.4
	<u></u>				

注: 计算中为简便起见未计入 H+, 因它只在 1 左右.

烧产物(CaO 等)、土壤颗粒以及空气中的 CO_2 。 我们把雨水样品加热驱赶 CO_2 ,加热后 pH 值明显增大。这表明 HCO_3 "的影响是存在的。

三、 小 结

- 1.根据 1979—80 年冬夏的测定结果看, 当前北京的降水是近中性的.
- 2.1980年夏季雨水的 SO_{7}^{-} 和 NO_{3}^{-} 平均值,分别为 12 和 3.76mg/l,pH 多数在 6—7之间。与之相比,日本东京 1973—74 年平均为 6.8 和 2.9mg/l,pH 为 4.39 tral 。 北京降水污染重而酸度不高,估计是因为空气中颗粒物多而酸被中和了的缘故。
- 3.pH 的变化幅度不大,空间分布没有规律性,与离子浓度间不存在相关性。 这些情况可能表明,在颗粒物水平高的条件下,pH 值是多种因素综合作用的结果。
- 4. SO; 与 NO; 之间, 存在较好的相关关系. SO; 与 NH, † 之间, 虽然在颗粒物中相关性良好, 但在雨水中却基本上是不相关的.
- 5.在目前测定的几种离子之间,阴阳离子的总当量浓度不能平衡,阴离子浓度偏小很多.其确切原因尚待今后查证.
- 6.雨水已受到了 SO。和 NO。"的污染、它们也是区域环境质量研究的重要对象。此外,随着空气质量的改善(近期将主要表现为颗粒物的减少),降水的酸度将如何变化? 因此,即使北京目前尚无酸雨,但降水的污染化学,以及降水污染与空气污染、土壤和地面水污染之间的关系,仍然是需要开展研究的。

附记: 我所华彦文和科学院林景梁等同志协助收集雨水样品,特此致谢。

参考文献

- [1] Acid Rain, EPA-600/8-79-028, 1979, p. 1.
- [2] J. M. Hales, Atmospheric Environment, 12, 1/3, 389(1978).
- [3] J. H. Shinn et al., Envir. Sci. Techn., 13, 1063 (1979).
- [4] Environmental Quality, 1978, U. S. GPO,

1979, p. 154.

- [5] 北京西郊环境质量评价协作组,北京西郊环境质量评价研究,1977,p.231.
- [6] 赵殿五,环境科学,1,4,78(1980)。
- [7] 大平俊男, 公害と対策, 1977, 10, p. 47-54.
- [8] R. J. Allan et al., Atmospheric Environment. 12, 1169(1978).
- [9] 牧野 宏、野島秀子、才木義夫, 环境研究(日), 1976年11号, p. 23.
- [10] 许維光,北京市环境保护监测站编 «环境监测», 1980年第三、四期, p. 3.
- [11] Chemical/Biological Relationships Relevant to Ecological Effects of Acid Rainfall, EPA-660/ 3-75-032, 1975, p. 18.
- [12] G. E. Likens, Chemical and Engineering News, 1976, 11, 22, p. 25.
- [13] 大竹千代子,日本环境图谱,共立出版株式会社, 1978年, p. 64.

上海市区降雨酸度及若干离子含量的测定

江研因 王素芸 陈惠华 杨春林 钱 华 (上海市环境保护科学研究所)

近年来,由于排放大气污染物质的结果,世界上不少地区出现了酸雨现象[1,2],我国重庆地区已出现了酸雨^[3],而除北京外多数地区由于没有进行雨水酸度的测量,还不知道是否也有酸雨问题。为了弄清上海市的情况,我们于 1980 年 3 月开始,分别在杨浦区(工业集中区域)和卢湾区(工业相对较少)设点,进行雨水酸度与化学组分的分析,本文是 1980 年 3 月至 8 月的观测结果。

实验方法

雨水样品用 SM1 型量雨器收集。 采雨水时间以 24 小时为一天的雨水计量。 雨水收集后用定性滤纸过滤,然后进行测试。 量雨器每次落雨之前用去离子水洗涤,以除去降落的尘埃。

雨水 pH 值的测定,5月份以前用 pHS-29A 型酸度计测量,5月份以后用 pHS-3型酸度计,测量时先将雨水样品搅拌 2—3分钟,然后放置 2分钟再取读数. 硫酸根的含量用硫酸钡比浊法测定.硝酸盐—亚硝酸盐总量,用 Cu—Cd 柱将硝酸盐还原后,以甲萘基乙二胺盐酸盐比色法测定. 氯离子,碳酸根离子分别用硝酸银滴定法和中和滴定法测量. 铵离子的测定,我们用靛酚蓝比色法

和上海电光器件厂生产的 PNH₃-1 型氨电极 测定法进行了比较对照,其测定结果是一致 的。 因此用电极法测定铵离子是快速,可靠 的。

实验结果与讨论

对杨浦区,卢湾区两个点收集的 52 个雨水样品的酸度、硫酸根、碳酸根、硝酸根、氯离子、铵离子等测定结果见表 1 和表 2.

表 1 酸度测定结果

采样时间 月	降雨量 mm	pH 值范围	pH 平均值	采样地点
3	131.1	5.65-6.72	6.36	卢湾区
4	51.0	5.61—7.37	6.70	卢湾区
5	58.0	6.02-7.32	6.69	卢湾区
6	145.2	6.05-7.64	6.94	卢湾区
7	59.7	7.04-7.75	7.35	卢湾区
8	451.9	6.24—7.59	6.65	卢湾区
4		6.10-7.50	6.74	杨浦区
5		6.75-7.28	7.00	杨浦区
6	}	6.59-7.78	7.19	杨浦区
7		6.96-7.64	7.24	杨浦区
8		6.33-7.25	6.81	杨浦区

雨水酸度月平均值的变化及可溶解离子 月平均值的变化情况见图 1、2、3、4、5、6。 (实线为卢湾区,虚线为杨浦区)