表面粗糙度越大,摩擦力越大,风向随高度而 改变的幅度就越大,

为了考察和分析沈阳地区地面风向随高 度的变化规律、我们绘制了1、4、7、10四个 月份的地面、300米、600米和900米四个高 度上的风向频率图 5 (4、7、10 三个月份省 略),从中我们可以十分明显的看出,无论任 何季节最多风向随高度明显的向西偏转。例 如1月份,地面的最多风向为北风,且东北风 的频率也较大,而到了300米时,虽然最多风 向仍是北风,但西北风的频率有了增加,到 600 米时由西北风取代北风而成为最多风 向。 到了 900 米高度时, 西北风的频率又比 600 米时有了很大的增加。 7 月份最多风向 随高度的改变趋势,同1月份几平完全一样, 只是由上层的西南风取代了低层的南风为最 多风向。 4月和10月也同样,最多风向随高 度明显偏西日频率不断加大。

沈阳地区大气边界层中最多风向随高度 逐渐向西偏转和频率不断加大这个特性,在 分析大气中污染物浓度随高度分布与较高层 次中污染物的扩散输送规律时,应予以特殊 的注意。 如果忽视这一点,可能得出一些不 符合实际的结论。 *

五、结 论

通过以上分析,我们对沈阳地区大气边 界层内风随高度的变化,可以得出以下几点 结论·

- 1. 在风速廓线指数分布模式中,其指数 m的数值约为 0.32 左右.
- 2.100 米高度的平均风速大约是10 米高度平均风速的 2.0—2.5 倍、300 米处约是 3.0 倍,1000 米处约是 4.0 倍。
- 3. 地面 10 米、300 米、600 米和 900 米 各高度处的月平均风速年变 化趋势完全一 致。
- 4. 各季最多风向随高度的增加都向西偏 转且有频数不断加大的特征.

碳酸平衡和 pH 调整计算(下)

汤鸿霄

(中国科学院环境化学研究所)

四、封闭溶液平衡体系

把含碳酸水质系设想为封闭溶液体系, 是把 CO₂ 看作不挥发性气体,与大气之间没 有交换,同时,也不产生碳酸盐沉淀,溶液处 于未饱和状态。由于在气液界面上 CO₂ 传质 过程缓慢,这种体系实际上大量存在。

1. 碳酸化合态含量

环境水化学的实际问题中,常是已知 pH 值和总碱度,要求定不同碳酸化合态 H₂CO₃, HCO₃, CO₃² 等。传统的计算式为:

$$[HCO_3^-] = \frac{[\vec{k}] + [H^+] - K_w/[H^+]}{1 + 2K_2/[H^+]}$$

$$[CO_3^{2-}] = \frac{K_2}{[H^+]} \left(\frac{[\vec{k}] + [H^+] - K_w/[H^+]}{1 + 2K_2/[H^+]} \right)$$

$$(43)$$

$$[H_2CO_3] = \frac{[H^+]}{K_1} \left(\frac{[ik] + [H^+] - K_w/[H^+]}{1 + 2K_2/[H^+]} \right)$$
(44)

为便利计算,历年来曾提出过多种算图。 若 用本文的基本方程式求解,十分简便,可见下 例:

[例1] 三种碱度计算

已知水的 pH = 10.0, $[\overline{\mathbf{w}}] = 2.0$ 毫克 当量/升,求各种碱度.

查表 1 可得 $\alpha = 0.758$, $\alpha_1 = 0.681$, $\alpha_2 = 0.319$, $\gamma = -1 \times 10^{-4}$. 应用基本方程式(32),

$$C_t = \alpha([碱] + \gamma) = 0.758(2.0 - 0.1)$$

= 1.440 毫克分子/升

$$[HCO_3^-] = C_1\alpha_1 = 1.44 \times 0.681$$

= 0.981 毫克当量/升

$$[CO_3^{2-}] = C_1\alpha_2 = 1.44 \times 0.319$$

= 0.92 毫克当量/升

[OH⁻] = 1.0 × 10⁻⁴ 克分子/升

= 0.1 毫克当量/升

[例2] 游离碳酸计算

已知水的 pH = 7.0, [碱] = 6.0 毫克 当量/升,求游离 CO.量.

查表 1, $\alpha = 1.224$, $\alpha_0 = 0.183$, 应用简化式 (33)

$$[H_2CO_3] = C_t\alpha_0 = \alpha_0\alpha$$
 [碱] (45)
= 0.183 × 1.224 × 6.0
= 1.344 毫克分子/升

2. 混合水的 pH 值

环境水化学实践中经常会遇到两种水质 系的混合问题,例如,两条河流相汇,河流入 湖、入海,地面水与地下水相遇,水处理设施 中不同水源、不同系统的澄清水、不同工业废 水及回流水的混合,等等。 时常需要计算混 合后的水化学参数,首先是 pH 值。

对水化学不熟悉的人,有时错误地按两种水量直接加权平均计算 pH 值或 [H⁺].实际这属于两种碳酸缓冲体系的混合,应按碳

酸物总量或总碱度加权平均计算。应用基本方程式,可得十分简便的计算式,

$$\alpha = C_t/[\vec{\mathbf{a}}] \tag{46}$$

[例 3] 两水混合后 pH 计算

有水 A, pH = 7.28, [碱] = 6.34 毫克 当量/升. 有水 B, pH = 9.60, [碱] = 0.38 毫克当量/升. 若两种水以 A:B = 2:8 的 水量混合,求 pH 值.

查表 1, 水 A 的 $\alpha = 1.11$, 水 B 的 $\alpha = 0.865$, $\gamma = -3.98 \times 10^{-5}$. 混合后 C_t 的加权平均值为:

$$C_t = 1.11 \times 6.34 \times 0.2 + 0.865(0.38 - 0.0398) \times 0.8$$

= 1.64 毫克分子/升

总碱度加权平均值为:

[碱] =
$$6.34 \times 0.2 + 0.38 \times 0.8$$

= 1.57 毫克当量/升

由 (46) 式, $\alpha = 1.64/1.57 = 1.045$, 查表可得相应的 pH 值为 7.68, 即为所求。 若按 pH 值加权平均计算则会得到 pH 9.14, 相差 其远.

3. 水的酸化和碱化

在水质控制处理的各种过程中,时常需要投加酸碱药剂,把水的 pH 值调整一定幅度,以满足工艺要求。此时需加计算的往往是为达到予定 pH 值应投加的药剂量,或是 pH 调整后的其他水质参数。 历来文献中应用各种不同公式及图表解决各类具体问题,比较杂乱。 实际上,只要掌握表 2 的变化规律,就可用基本方程式统一计算。

向水中加入强酸或氢氧化物强碱时, C, 并不变化,[碱]则随药剂量作等当量变化.应用基本方程式,可得:

投加药剂的酸量为 ΔC_A 或碱量为 ΔC_B 时,总 碱度变化值 $\Delta [$ 碱]的计算式为:

$$\Delta \left[\vec{\mathbf{w}}\right] = \Delta C_A = -\Delta C_B = \left(1 - \frac{\alpha}{\alpha}\right) \left[\vec{\mathbf{w}}\right]$$
(48)

式中的 α 和 α' 分别为 pH 调整前后的 α 值。若投加的碱剂是碳酸盐类如 Na_2CO_3 等,则除总碱度外, C_t 也将随之有等克分子的增大,计算式可求得为:

$$\Delta C_{\rm B} = \left(\frac{\alpha - \alpha'}{2\alpha' - 1}\right) [\vec{\mathbf{m}}] \tag{49}$$

[例 4] 酸碱药剂用量计算

有工业用水, pH = 6.50, [碱] = 1.4 毫克当量/升

(1) 酸化到 pH 6.00, 求需加酸量.

查表, $\alpha=1.71$, $\alpha'=3.25$, 代入(48)式

$$\Delta C_{A} = \left(1 - \frac{1.71}{3.25}\right) \times 1.4$$

= 0.663 毫克当量/升

(2) 碱化到 pH 8.00, 求需加碱量.

查表, α'=1.02.若加 NaOH, 由(48)式,

$$\Delta C_B = -\left(1 - \frac{1.71}{1.02}\right) \times 1.4$$

= 0.947 毫克当量/升

若加 Na₂CO₃,由(49)式,

$$\Delta C_B = \left(\frac{1.71 - 1.02}{2 \times 1.02 - 1}\right) \times 1.4$$

= 0.929 臺克分子/升

4. 天然水体缓冲能力

天然水体是一种碳酸缓冲体系。虽然有多方面的物理、化学、生物过程会影响水体的缓冲容量,但碳酸体系仍是其中最重要因素,时常根据它评价水体对排入酸碱废水的容纳能力。天然水体大多属于 pH < 8.34 类型,可只考虑一级碳酸平衡。 使水体升高 ΔpH 值,允许排入的碱量增值 ΔC_B 的一般计算式为:

$$\Delta C_{\rm B} = \frac{\left[\vec{m} \right] (10^{\Delta \rm pH} - 1)}{1 + K_{\rm I} \times 10^{\rm pH + \Delta pH}} \tag{50}$$

使水体降低 Δ pH 时,允许排入的酸量增值 Δ C_A 仍可用此式计算, Δ C_A = $-\Delta$ C_B. 一般规定,水体 pH 值应保持在 6.5—8.5,代入上式,

$$\Delta C_{\rm R} = 0.0071 \, \text{[}\,\text{id}\,\text{]}\,\text{(}10^{8.5-pH} - 1\text{)}\,\text{(}51\text{)}$$

$$\Delta C_A = 0.415 \, [\overline{w}] \, (1 - 10^{6.5-pH})$$
 (52)

若按基本方程式,应用(48)式计算,较 常用现有各式要简便得多.

[例 5] 水体缓冲能力计算

有河流, pH = 7.2, [碱] = 2.5 毫克当量/升,求允许排人的酸碱量.

查表, $\alpha = 1.14$, 在 pH 6.5 时的 $\alpha' = 1.71$.

$$\Delta C_A = \left(1 - \frac{1.14}{1.71}\right) \times 2.5$$

= 0.833 毫克当量/升

在 pH 8.5 时, $\alpha' = 0.993$,

$$\Delta C_B = -\left(1 - \frac{1.14}{0.993}\right) \times 2.5$$

= 0.370 毫克当量/升

五、溶液与固体平衡体系

此处仍先讨论封闭体系中碳酸盐在水溶 液中的溶解平衡. 以碳酸钙为例,

$$CaCO_3$$
 (固) \rightleftharpoons $Ca^{2+} + CO_3^{2-}$ [Ca^{2+}][CO_3^{2-}] = K_S

溶液中的 CO3 同时参与碳酸平衡,

$$2HCO_3^- \rightleftharpoons CO_2 + H_2O + CO_3^2$$

若 [Ca²⁺] 浓度为已知固定值,则 CaCO₃ 的 溶解平衡决定于碳酸平衡,也由溶液 pH 值 控制,同样属于 pH 调整问题。

在 CaCO, 的纯水溶液中, Ca^{2+} 离子总量应等于全部碳酸化合态的总和, $[Ca^{2+}]=C$, 同时,

$$[Ca^{2+}] = \frac{K_S}{[CO_s^{2-}]} = \frac{K_S}{C_1\alpha_2}$$
 (53)

由此可得

$$[Ca^{2+}] = \left(\frac{K_s}{a_0}\right)^{0.5} \tag{54}$$

若以基本方程式代人(53)式,可得

$$[Ca^{2+}] = \frac{K_s}{\alpha\alpha_s(\lceil id \rceil + \gamma)}$$
 (55)

或用简化式代入,可得

$$[\operatorname{Ca}^{2+}] = \frac{\mathrm{K}_{\mathrm{S}}}{\alpha \alpha_{2} \left[\widetilde{\mathrm{M}} \right]} \tag{56}$$

或者

$$\alpha\alpha_2 = \frac{K_s}{[Ca^{2+}][\vec{a}\vec{a}]} \tag{57}$$

这些方程式可以在不同条件下作为碳酸 化合物固液平衡体系的基本计算式.

1. 碳酸盐的溶解区域

在封闭体系的碳酸钙水溶液中,碳酸物总量为固定值,应用(56)式可以计算各 pH 值的溶解平衡,这时需知 C, 或[碱]值. 若为单纯的 CaCO。水溶液,则可应用(54)式计算。

实际上,各种金属碳酸盐都可作类似计算,若以 M²⁺ 表示金属阳离子,可写出下式:

$$[M^{2+}] = (K_s/\alpha_2)^{0.5}$$
 (58)

$$[M^{2+}] = K_s/\alpha\alpha_s$$
 [\vec{m}] (59)

并有 $-\log[M^{2+}] = 0.5pK_s - 0.5p\alpha_2$ (60) 应用此式可以绘出 $-\log[M^{2+}]$ 对 pH 的饱和平衡曲线,从而可得到各种金属碳酸盐的溶解区域图.

图 4 为 CaCO₃、FeCO₃、ZnCO₃ 的溶解 区域图, $C_t=10^{-2.5}$ 克分子/升,在 25°C 时, CaCO₃ 的 $K_S=4.82\times10^{-9}$, $pK_S=8.32$.

为便利计算,根据表 1 各值,列出不同组合的分布系数表如表3.

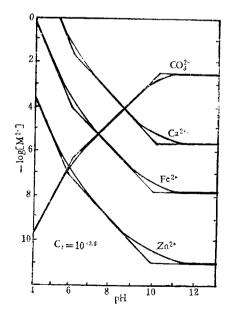


图 4 碳酸溶解区域图

[例 6] 控制溶解度的沉淀物

有水, pH = 6.8, [碱] = 0.1 毫克当量/升, 求 $FeCO_3$ 和 $Fe(OH)_2$ 两种沉淀物中何者控制 Fe^{2+} 溶解度.

查表 3, $\alpha\alpha_2 = 2.96 \times 10^{-4}$, FeCO₃ 的 $K_S = 3.98 \times 10^{-11}$, 应用 (59) 式可求此时 的饱和平衡 [Fe²⁺],

[Fe²⁺] =
$$3.98 \times 10^{-11}/2.96 \times 10^{-4} \times 10^{-4}$$

= 1.34×10^{-3} 克分子/升

Fe(OH), 的 $K_S = 3.16 \times 10^{-15}$, 饱和平衡 $[Fe^{2+}]$ 为:

$$[Fe^{2+}] = K_s/[OH^-]^2 = 3.16 \times 10^{-15}/(10^{-7.2})^2$$

= 7.94 × 10⁻¹ 克分子/升

可见此时 FeCO₃ 的溶解度远低于 Fe(OH)₂, 在溶液中会首先生成, 故成为控制 Fe²⁺ 浓度的沉淀物.

2. 水的稳定性

在水质控制技术中,水的稳定性及其调整,是由来已久的传统课题,有大量研究工作,但对此问题的碳酸平衡实质,文献中时常并未清楚阐述,我国某些教材中也常出现概念模糊甚至错误的叙述.

天然水和各种用水中,若对碳酸钙处于 未饱和状态,就有继续溶解的趋势,通常称为 具有侵蚀性。 若处于过饱和状态,就趋向于 产生沉淀,称为具有沉积性。 若大致处于饱 和平衡状态,则称为具有稳定性。

判断水的稳定性,首先把易于测定的 [Ca²+] 作为固定值,然后,本可把 [CO³-] 直接作为判断指标,但此值难以测定. 历来的作法是再把 [碱] 设想为固定值,计算出 [CO³-] 达到饱和平衡时相应的 pH 值,称为平衡 pHs 值,作为水的稳定性指标. 把水的实有 pH 值与 pHs 值的差称为稳定性指数 S,

$$S = pH - pH_s \tag{61}$$

这样,当 S < 0, 水有侵蚀性,当 S > 0, 水有 沉积性. 一般认为 $S \le \pm 0.25 \sim 0.3$ 时, 水是 稳定的.

表 3 分布系数表

4.00	$\alpha \alpha_2$	$\alpha \alpha_0$	α_0/α_2	pH	αα	$\alpha \alpha_0$	α_0/α_1
	4.690×10 ⁻	224.71	4.791×10 ⁸	7.55	[<u> </u>	
4.10	5.904×10 ⁻⁷	178.50	3.023×10 ⁸	7.60	1.658×10 ⁻³ 1.859×10 ⁻³	0.06310 0.05622	3.805×10 3.024×10
4.20	7.434×10 ⁻⁷	141.80	1.907×108	7.65	2.087×10 ⁻³	0.05009	
4.30	9.356×10 ⁻⁷	112.60	1.203×10 ⁸	7.70	2.087×10^{-3} 2.339×10^{-3}	0.03009	2.401×10
1	1.178×10 ⁻⁶	89.46	7.595×10 ⁷	II	ŀ	1	1.907×10
4.40 4.50	1.483×10 ⁻⁶	71.06	4.792×10 ⁷	7.75	2.624×10 ⁻³	0.03975	1.515×10
	1.867×10-°	56.45	3.023×10 ⁷	7.80	2.940×10^{-3}	!	1.203×10
4.60	2.351×10 ⁻⁶		1	7.85	3.298×10^{-3}	0.03153	9.560
4.70	2.960×10 ⁻⁶	44.84	1.908×107	7.90	3.697 × 10 ⁻³	0.02807	7.593
4.80	1	35.62	1.204×10 ⁷	7.95	4.146×10 ⁻³	0.02500	6.031
4.90	3.726×10 ⁻⁶	28.29	7.594×106	8.00	4.648×10-3	0.02227	4.792
5.00	4.689×10 ⁻⁶	22.47	4.792×106	8.05	5.209×10-3	0.01982	3.806
5.10	5.904×10 ⁻⁶	17.85	3.023×106	8.10	5.836×10 ⁻³	0.01765	3.024
5.20	7.434×10-6	14.18	1.907×106	8.15	6.537×10 ⁻³	0.01570	2.402
5.30	9.356×10 ⁻⁶	11.26	1.204×106	8.20	7.327 × 10-3	0.01398	1.908
5.40	1.178×10-	8.946	7.597×10 ⁵	8.25	8.202×10 ⁻³	0.01243	1.515
5.50	1.483×10-5	7.106	4.790×10 ⁵	8.30	9.187 × 10−3	0.01106	1.204
5.60	1.867 × 10−5	5.644	3.023×10 ⁵	8.35	1.029×10-2	0.9831×10^{-2}	9.559×10-1
5.70	2.350×10 ⁻⁵	4.484	1.908×105	8.40	1.151×10 ⁻²	0.8740×10^{-2}	7.594×10~1
5.80	2.959×10-5	3.561	1.204×10 ⁵	8.45	1.287×10^{-2}	0.7768×10-2	6.034×10 ⁻¹
5.90	3.725×10 ⁻⁵	2.829	7.594×10 ⁴	8.50	1.440×10 ⁻²	0.6902×10-2	4.793×10~1
6.00	4.689×10 ⁻⁵	2.247	4.792×10⁴	8.55	1.611×10-2	0.6129×10 ⁻²	3.805×10~1
6.05	5.261×10 ⁻³	2.003	3.807 × 10⁴	8.60	1.800×10^{-2}	0.5442×10^{-2}	3.023×10~1
6.10	5.904×10 ⁻⁵	1.785	3.023×104	8.65	2.011×10-2	0.4828×10^{-2}	2.401×10 ⁻¹
6.15	6.625 × 10-5	1.591	2.401 × 10⁴	8.70	2.245 × 10-2	0.4282×10^{-2}	1.907 × 10-1
6.20	7.423×10 ->	1.420	1.908×10⁴	8.75	2.505×10 ⁻²	0.3795×10-2	1.515×10-1
6.25	8.337×10 ⁻⁵	1.263	1.515 × 10⁴	8.80	2.793×10 ⁻²	0.3362×10-2	1.204×10-1
6.30	9.336 × 10-5	1.126	1.204×10⁴	8.85	3.114×10 ⁻²	0.2977×10-2	9.560 ★ 10-2
6.35	1.050×10-4	1.003	9.559×10 ³	8.90	3.467 ★ 10-2	0.2633×10-2	7.594×10~2
6.40	1.178×10⁻⁴	0.8943	7.594×10 ³	8.95	3.857 × 10 ⁻²	0.2327×10^{-2}	6.032×10 ⁻²
6.45	1.322 × 10-4	0.7971	6.032×10 ³	9.00	4.288×10^{-2}	0.2055×10^{-2}	4.792×10 ⁻²
6.50	1.482×10-4	0.7103	4.792×10³	9.10	5.281×10 ⁻²	0.1597×10 ⁻²	3.024 × 10~2
6.55	1.664×10-4	0.6331	3.805×10^{3}	9.20	6.471×10 ⁻²	0.1234×10 ⁻²	1.907×10-2
6.60	1.866 × 10-4	0.5643	3.024×10^{3}	9.30	7.882×10 ⁻²	0.9488 × 10-3	1.204×10-2
6.65	2.095×10⁻⁴	0.5031	2.401×10 ³	9.40	9.534×10⁻²	0.7241×10 ⁻³	7.595×10 ⁻³
6.70	2.350 \(10^4 \)	0.4482	1.907×10^{3}	9.50	1.144×10-1	0.5481×10-3	4.791×10 ⁻³
6.75	2.636 × 10-4	0.3994	1.515×10 ³	9.60	1.360 × 10-1	0.4110×10-3	3.022×10^{-3}
6.80	2.959×10 ⁻⁴	0.3561	1.203×10 ³	9.70	1.599×10-1	0.3050×10-3	1.907×10 ⁻³
6.85	3.319×10 ⁻⁴	0.3173	9.559×10²	9.80	1.859×10-1	0.2238 × 10⁻³	1.204 × 10⁻³
6.90	3.722×10-4	0.2827	7.595×10 ²	9.90	2.115×10 ⁻¹	0.1621×10-3	7.594×10-4
6.95	4.178×10-4	0.2520	6.032×10 ²	10.00	2,420 × 10-1	0.1160×10 ⁻³	4.793 × 10-⁴
7.00	4.685 × 10-4	0.2245	4.791×10 ²	10.10	2.707×10 ⁻¹	0.8183×10-4	3.023 × 10~⁴
7.05	5.258×10~⁴	0.2002	3.806×10 ²	10.20	2.989×10-1	0.5702×10 ⁻⁴	1.908×10-4
7.10	5.899×10 ⁻⁴	0.1783	3.023×10 ²	10.30	3.259 ×10 ⁻¹	0.3923×10-4	1.204×10-4
7.15	6.614×10-4	0.1589	2.402×10 ²	10.40	3.510×10 ⁻¹	0.2665×10-4	7.593×10-5
7.20	7.423×10 ⁻⁴	0.1416	1.907×10 ²	10.50	3.730×10^{-1}	0.1792×10-4	4.792×10 ⁻⁵
7.25	8.324×10⁻⁴	0.1261	1.515×10²	10.60	3.942×10-1	0.1192×10-4	3.024×10 ⁻⁵
7.30	9.336×10-⁴	0.1123	1.203×10 ²	10.70	4.123×10 ⁻¹	0.7863×10-5	1.907 × 10-5
7.35	1.048×10 ⁻³	0.1002	9.559×10	10.80	4.277×10-1	0.5148×10-5	1.204 × 10-5
7.40	1.175×10 ⁻³	0.08925	7.595×10	10.90	4.409×10 ⁻¹	0.3348×10-5	7.594×10-6
7.45	1.318×10 ⁻³	0.07951	6.031×10	11.00	4.518×10 ⁻¹	0.2165×10⁻⁵	4.791×10~
7.50	1.478 × 10−3	0.07083	4.791×10]			

从(43)式可以求得饱和平衡时的[H+],

$$[H^{+}] = \frac{K_{2}[Ca^{2+}]}{K_{S}} \left(\frac{[\overline{W}]}{1 + 2K_{2}/[H^{+}]}\right) (62)$$

进一步简化可得,

$$pH_S = pK_2 - pK_S - \log[Ca^{2+}] - \log[\tilde{k}]$$
(63)

此式是传统的平衡 pH_s 值计算式,有时再加含盐量校正值,并有各种算图。

若应用本文提出的 (57) 式,由 $\alpha\alpha_2$ 值在表 3 中查得相应 pH 值即为 pHs,比历来的计算式和图表都要简便,即:

$$pH_S = f(\alpha \alpha_2) = f(K_S/[Ca^{2+}][\vec{w}])$$
 (64)

3. 水质稳定调整

当水具有侵蚀性或沉积性时,在水质处理中常进行稳定调整,其实质是使 [COi] 调整到接近饱和平衡值而使水具有稳定性。通常采取的方法主要有两类: (1) 向水中通入或散出 CO₂. 按表 2, 此时总碱度并不变化。把现有 pH 调整到 pHs值,需调整的 CO₂量应等于碳酸物总量的差值。(2) 投加酸碱药剂。药剂用量与酸化或碱化时同样方法计算。由于总碱度会随着 pH 调整而改变,调整的最终目标不再是原来计算的 pHs值,而应是与调整后的总碱度及碳酸物总量相适应的 pH 值, 一般以 pH* 表之。

如果投加的药剂不是碳酸盐,也不含 Ca²⁺离子,则碳酸物总量将保持不变,并且, 饱和平衡时的[CO]]也是固定值,故有:

 $K_s = [Ca^{2+}][CO_s^{3-}]^* = [Ca^{2+}]C_t\alpha_s^*$ (65) 式中的 $[CO_s^{3-}]^*$ 及 α_s^* 都是调整后达到饱和 平衡时的数值,由 α_s^* 查表可求此时的 pH_s^* 值,

 $pH_s^* = f(\alpha_2^*) = f(K_s/[Ca^{2+}]C_t)$ (66) 若碱化时投加药剂是碳酸盐如 Na_2CO_s 或钙盐如 $Ca(OH)_2$,则 C_t 或 $[Ca^{2+}]$ 将会增大,使 pH_s^* 有所降低而药剂需量减少。若需持确计算,可用试算渐近法由(66)式求出于 pH_s^* 值。

欧美及苏联文献中进行此类计算,常使

用繁杂得多的公式和图表,此处不再评述.

[例 7] 稳定调整计算

有水, pH = 6.8, [碱] = 0.4 毫克当量/升, [Ca²⁺] = 0.7 毫克离子/升, t = 25°C, 进行稳定调整.

根据 (64) 式,计算查出 pH_8 $\alpha\alpha_2 = 4.82 \times 10^{-9}/7 \times 10^{-4} \times 4 \times 10^{-4}$ = 1.721×10^{-2}

查表 3,相应的 $pH_s = 8.58$ 。由 (61) 式, S = 6.8 - 8.58 = -1.78,故水具有侵蚀性。

若从水中散除 CO₂ 提高 pH 值,其量应 为两种情况下的 C₂ 差值。由表 1 查 α 值,

$$\Delta C_t = (\alpha - \alpha')[\vec{a}] = (1.356 - 0.9885)$$

$$\Delta[CO_2] = 44 \times 0.147 = 6.47$$
 毫克/升

- 若投加 NaOH 碱化,需求 pH* 值,由 (66)式,

$$\alpha_2^* = 4.82 \times 10^{-9} / 7 \times 10^{-4} \times 1.356 \times 4$$

 $\times 10^{-4} = 1.269 \times 10^{-2}$

查表 3, 得相应的 $pH_s^* = 8.44$, $\alpha' = 0.9954$, 由 (48) 式可求加碱量,

 $\Delta C_B = -(1 - 1.356/0.9954) \times 4 \times 10^{-4}$ = 0.145 毫克当量/升

六、溶液与大气平衡体系

溶液与大气之间可以进行 CO, 交换时, 称为开放体系, 比封闭体系 更接 近真实状况.

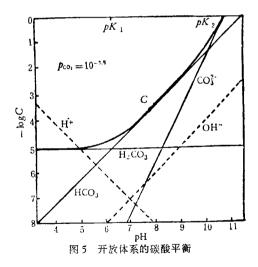
大气中 CO₂ 含量从农村地区的 0.03% 到工业区的 0.1%,一般环境计算中常取其大气分压 $p_{CO_2} = 10^{-3.5} = 3.16 \times 10^{-4}$ 大气压 (25°C)。达到平衡时,溶液中溶解 CO₂ 量按亨利定律,

 $10^{-3} \approx 10^{-1.5}$, [H₂CO₃] = $10^{-1.5} \times 10^{-3.5} = 10^{-5}$ 克分子/升。

= 0.44 毫克 CO₂/升

在 pco, 及 K_H 均不变时,此值应为固定常数. 实际在许多开放的水质系中,溶解 CO₂都远高于此值,呈过饱和状态,可达 10—30 毫克 CO₂/升. 这是由于溶液与大气之间建立碳酸平衡往往需若于小时.

应用分布系数法和基本方程式,可得:


$$C_{t} = \frac{1}{\alpha_{0}} [H_{2}CO_{3}] = \frac{1}{\alpha_{0}} K_{H} p_{CO_{2}}$$
 (68)

$$C_{t} = \frac{1}{\alpha_{0}} K_{H} p_{CO_{2}} = \alpha ([\vec{m}] + \gamma) \quad (69)$$

[HCO₃] =
$$\frac{K_1}{[H^+]} K_H p_{CO_2} = \frac{\alpha_1}{\alpha_0} K_H p_{CO_2}$$
 (70)

$$[CO_3^{2-}] = \frac{K_1 K_2}{[H^+]^2} K_H p_{CO_2} = \frac{\alpha_2}{\alpha_0} K_H p_{CO_2}$$
 (71)

由此可知,在一定温度下达到平衡时,开放体系中 [H₂CO₃] 为固定值,而 C₁、[HCO₃]、[CO₃²] 都随溶液 pH 值变化。 [HCO₃]、[CO₃²] 与 pH 成直线关系,斜率分别为 1 和 2。在 pH 值一定时,溶液中所有碳酸化合态均为定值,其浓度分布可见图 5。

1. 开放体系的 pH 值和化合态

在开放体系中,若已知大气分压 pco,、即可计算出 [H₂CO₃],但若再求 [HCO₃], [CO₃²]等,还要知道溶液 pH,这可由总碱 度求定。在符合简化式条件时,

$$C_{t} = \frac{K_{H}p_{CO_{2}}}{\alpha_{n}} = \alpha [\text{M}] \qquad (72)$$

 $\alpha\alpha_0 = [H_2CO_3]/[\vec{q}] \qquad (73)$

由表 3 中可按 aco 值查得相应的 pH 值。

[例 8] 开放体系化合态计算

若大气 $p_{CO_2}=10^{-3.5}$ 大气压, 水的[碱]=. 2 毫克当量/升, 求各种碳酸化合态.

由(67)式, $[H_2CO_3] = 10^{-5}$ 克分子/升,

 $\alpha\alpha_0 = 10^{-5}/2 \times 10^{-3} = 5 \times 10^{-3} = 0.005$ 查表得 pH = 8.63, 并知 $\alpha_0 = 0.5138 \times 10^{-2}$, $\alpha_1 = 0.9753$, $\alpha_2 = 1.951 \times 10^{-2}$, 故有 [HCO₃] = $10^{-5} \times 0.9753/0.5138 \times 10^{-2}$

- 1.898 毫克当量/升

 $[CO_3^{2-}] = 10^{-5} \times 1.951 \times 10^{-2}/0.5138$ × $10^{-2} = 0.038$ 毫克当量/升

2. 光合作用

水生植物在光合作用中吸收溶解 CO₂,相应降低 C₁. 这时,由于 CO₂气体交换缓慢,一般仍按封闭体系处理。 根据表 2,溶液中总碱度保持不变而 pH 相应升高。

[例 9] CO₂的消耗

有地面水,[碱] = 0.85 毫克当量/升,由于藻类光合作用,使 pH 值由 9.0 上升为 9.5,求消耗的 CO_2 量。

由表 2 查得各 α 和 γ 值,代人基本方程式

 $C_t(pH9.0) = 0.9592 (0.85 - 0.01) = 0.8057$ $C_t(pH9.5) = 0.8862 (0.85 - 0.032) = 0.7249$

 $\Delta[CO_2] = \Delta C_1 = 0.0808$ 毫克分子/升

3. 曝气法

除铁、除锰、除气、稳定等水处理过程,常以各种方式实行曝气,由水中散除过饱和的CO₂,随之提高pH值.不过这时通常并不能达到平衡状态,可按封闭体系计算,类似于例9.有时需按开放体系考虑,类似例8的方法,举例从略。

七、气-液-固三相平衡体系

在环境水化学中,有时需考虑溶液、大气和沉淀物的三相碳酸平衡. 理论上,这种体系是最普遍的真实体系,但实际上,水质系时

常处于溶解 CO₂ 的过饱和状态,仍按封闭体系计算.只在少数特殊情况下,才按三相平衡体系处理.

由气液平衡式(71)和固液平衡式(53), 可以得到:

$$[Ca^{2+}] = \frac{\alpha_0}{\alpha_2} \frac{K_S}{K_H p_{CO_s}} = \frac{\alpha_0}{\alpha_2} \frac{K_S}{[H_2 CO_3]}$$
 (74)

可以作为三相碳酸平衡的基本计算式。它说 明在一定的气相分压 p_{CO_2} 下, $[H_2CO_3]$ 为固 定值,而对应每一 pH 值,有一定的 $[CO_3^{2-}]$ 值,同时有固定的饱和平衡 $[Ca^{2+}]$ 值。 反 过来,对一定的 $[Ca^{2+}]$ 有固定的饱和平衡 pH 值,也就是开放体系的 pH_s 值,由 α_0/α_2 可 查表得到,

$$\frac{\alpha_0}{\alpha_2} = \frac{K_{\text{HPCo}_2}[\text{Ca}^{2+}]}{K_{\text{S}}} = \frac{[\text{H}_2\text{CO}_3][\text{Ca}^{2+}]}{K_{\text{S}}}$$
(75)
$$pH_{\text{S}} = f(\alpha_0/\alpha_2)$$
(76)

对这种体系加入酸碱进行 pH 调整时,若用 HCl 或 NaOH 等,则调整目标就是 pHs 值。若用 Ca(OH)。或 Na₂CO₃ 等,会使溶液中 [Ca²⁺] 或 [CO³⁻] 发生变化,可根据情况灵活运用以上计算式,在必要时采取试算法求解。

[例 10] 三相平衡计算

有水,pH = 8.0,[碱] = 1.67 毫克当量/升, $[Ca^{2+}] = 0.30$ 毫克分子/升。若转为开放体系,求其最终状态。

当水处于封闭体系,其饱和平衡 [Ca²⁺] 值由(56)式计算, $\alpha\alpha_2 = 4.648 \times 10^{-3}$,

因 0.621>0.30, 故体系处于未饱和状态。

当体系对大气开放,其 pH 由 (73) 式计算,

$$\alpha\alpha_0 = 10^{-5}/1.67 \times 10^{-3} = 0.5988 \times 10^{-2}$$

查表 3 可得 pH = 8.56, 较原来升高。此时 饱和平衡 [Ca²⁺] 值再由 (56) 式计算, $\alpha\alpha_2$ = 1.6465×10^{-2} .

$$[Ca2+] = \frac{4.82 \times 10^{-9}}{1.6465 \times 10^{-2} \times 1.67 \times 10^{-3}}$$
$$= 0.175 \times 10^{-3}$$

因 0.175 < 0.30, 故体系处于过饱和状态。

现在计算发生 $CaCO_3$ 沉淀后的情况。沉淀前的 $[CO_3^{3-}]$ 由 (71) 式计算, $\alpha_0/\alpha_2 = 0.3635$,

 $[CO_3^{-1}] = 10^{-5}/0.3635 = 0.275 \times 10^{-4}$ 设达到平衡时的沉淀量为 x, 可由下式计算,

([Ca²⁺] - x)([CO₃²⁻] - x) = K_s (77) 可由试算法求出 $x = 0.0108 \times 10^{-3}$. 平衡 时将有:

$$[Ca^{2+}] = 0.30 \times 10^{-3} - 0.0108 \times 10^{-3}$$

= 0.2892 × 10⁻³ 克分子/升

[CO₃²⁻] =
$$0.275 \times 10^{-4} - 0.0108 \times 10^{-3}$$

= 0.0167×10^{-3} 克分子/升

即沉淀后的浓度。再由(71)式可求得:

 $\alpha_0/\alpha_2 = 10^{-5}/0.0167 \times 10^{-3} = 0.5988$ 查表可得溶液的最终 pH 值为 8.45

参考文献

- [9] Langelier, W. F., Jour. Amer. Water Works Assoc., 28, 1500 (1936).
- [10] Dye, J. F., Jour. Amer. Water Works Assoc., 44, 356 (1952).
- [11] Апельцин, И. Э., Исследования по водоподготовке, 25—37 (1959).
- [12] Deffeyes, K. S., Limnology and Oceanography, 10, 412 (1965).
- [13] Trussell, R. R. and Thomas, J. F., Jour. Amer. * Water Works Assoc., 63, 49 (1971).
- [14] Kemp, P. H., Water Research, 5, 297, 413, 611, 735, 933 (1971).
- [15] 三木晖一郎,水道协会杂志,No. 464,19 (1973)。
- [16] Perières, J., Centre Belge d'Etude et de Documentation des Eaux, No. 386, 22(1976).
- [17] 哈尔滨建筑工程学院给水排水教研室,地下水除铁, 中国建筑工业出版社 (1977)。